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1. Introduction

The idea of using pairs of numbers to locate points in the plane and triples of
numbers to locate points in space was first clearly expressed by Descartes in
the seventeenth century. The concept was generalised to Euclidean n-Space,
and eventually lead to the definition of abstract vector spaces over fields. The
subject of vector spaces became so large and fundamental to modern math-
ematics that mathematicians tried to abstract away some of their properties
to create ever more interesting structures. One such structure to emerge was
the projective plane.

2. Projective Planes

Let V be a three dimensional vector space over a field F of order q. We call
the one-dimensional subspaces of V points, and the two-dimensional sub-
spaces lines, with incidence given by the containment relation. This structure
is denoted PG(2, q).
A little linear algebra shows that the points and lines of PG(2, q) satisfy:

1. every pair of distinct points are incident with a unique common line,

2. every pair of distinct lines are incident with a unique common point,

3. PG(2, q) contains a set of four points such that no three are collinear.

We define a Projective Plane to be any set of abstract points and lines, to-
gether with an incidence relation that satisfies the above properties. In partic-
ular, PG(2, q) is a Desarguesian projective plane.

Figure 1: A projective plane of order 4

Given a projective plane P , is there a relationship between the number of
points and lines of P? It turns out that as a simple consequence of the defini-
tion, there exists a number n ≤ 2 (called the order of P ) such that

1. each line contains exactly n + 1 points.

2. each point is on exactly n + 1 lines.

3. P contains n2 + n + 1 points and n2 + n + 1 lines.

What is the order of PG(2, q)?

3. Ovals and Hyperovals

Let P be a projective plane of finite order n. An arc of P is a set of points, no
three collinear. It is known that an arc of P has size at most n+2, and equality
occours only if P has even order. In this case the arc is called a hyperoval. If
P has odd order, an arc of P will have at most n + 1 points – such an arc is
called an oval.
The classification of the ovals of PG(2, q) is of fundamental importance in fi-
nite geometry. The remarkable theorem of Segre classifies all ovals of odd
order; currently the problem is still open for q ≥ 64, where q = 2h. Try to find
the ovals and hyperovals in the Fano Plane (Figure 2). How many are there?
What about the projective plane shown in Figure 3.

4. Polarities

A correlation α of a projective plane is a one-to-one mapping of the points
onto the lines and the lines onto the points such that A is on m if and only
if mα is on Aα. A polarity is a correlation of order two (applying the polarity
twice gives the identity map). Below are some examples of polarities, where
like colours correspond to images.

Figure 2: A polarity of the Fano Plane (order 2)

Figure 3: A polarity of a projective plane of order 3

When studying polarities we are often concerned with the points and lines
that are incident with their image. These elements are the absolute points

and lines of the polarity. The configuration of absolute points depends on the
order of the plane on which they are defined. Let α be a polarity of a finite
projective plane of non-square order n. Then α has n + 1 absolute points and

(a) if n is even the absolute points are collinear,

(b) if n is odd the absolute points form an oval.

Find the absolute points of the polarities shown above and convince yourself
that they satisfy the required properties. What conditions do the absolute lines
of a polarity satisfy?

5. An Application To Communication

Consider a set of telephone users who would like to speak with one another.
In order for two users to speak to each other there needs to be a switch con-
necting them. Our goal is to minimize the number of switches.
Clearly we require at least one switch between any pair of users; since we are
trying to minimize the number of switches we will further assume that any two
users should be connected by exactly one switch. Additionally, we would like
to be able use exactly the same hardware for each switch; this implies that
each switch should connect the same number of users in the ”same” way.
To solve this geometrically let users correspond to points and switches to
lines. Our requirements translate to the following:

1. every pair of distinct points is incident with a unique line

2. every line is incident with the same number of points

It is clear that any projective plane satisfies the above constraints, so let us
use the Fano Plane to construct such a communication system with 7 users.

Figure 4: The Fano plane with its incidence graph

The figure on the right is the incidence graph, which in this application corre-
sponds to our communication system. Each outer point represents a switch
and each inner point represents a telephone user. Note that each switch con-
nects users of the form n, n+1 (mod 7), n+3 (mod 7) (where 7 ≡ 0). This is
what was meant by saying that each switch must connect users in the same
way.
So, given a system of seven users we can connect them using 7 switches,
but is this the minimum? Try to construct a system that connects a different
number of users in this way. What numbers are possible?


