
Mathieu groups, the Golay code and Curtis’ Miracle Octad Generator
Shane Kelly - AMSI/ICE-EM Vacation Scholarship

1 Coding theory

1.1 Coding Theory

The purpose of coding theory is to detect and correct errors in communication. This is achieved by converting all
of the information to be transmitted into a string of codewords that have been previously agreed upon by the
sender and the reciever. The codewords are usually strings of letters of equal length from a set of characters e.g.
{0, 1}, Z or the roman alphabet. If the set is{0, 1} then the code is refered to as a binary code. Ideally the code
should have as many words as possible and the words should be as short as possible to speed transmission.

If any errors (altered characters) occur to a word during the transmission then (ideally) the received word will not
match any of the words in the code and the error can be detected. The error can also be corrected using the concept
of Hamming distance, which is the number of characters that are different between any two words. Any words
received that are not in the code are then replaced by the codeword that is closest to it i.e. differs in the least
number of characters. Ife is the maximum number of errors that a code can accurately correct then the code is
refered to as ae error correcting code. Ideally the code should be able to correct as many errors as possile.

The concept of Hamming distance can also be used to define a ball around any wordw in the setΩn of all possible
words of a given lengthn using a given set of charactersΩ. If the distance between a word andw is less thanr
then it is said to be contained in the ball of radiusr aroundw. Now the ideals of having lots of short words and
also being able to correct many errors are at odds with each other. One way of achieving a good balance between
the two is to spread the codewords evenly around the space of all possible words. If for some numberr, every
possible word is in a ball of radiusr around some codeword, and none of these balls overlap, then the code is
refered to as perfect.

1.2 The Golay Code

The Golay code first appeared in June 1949 in the Proceedings of the I.R.E. (I.E.E.E.) in a paper titled “Notes on
Digital Coding” [8]. The paper occupied a little more that half a page in the Correspondence section but E. R.
Berkekamp has called it the “best single published paper” in coding theory. The 24 Golay code is an extension of
the 23 Golay code which is a perfect 3 error correcting code. The 24 Golay code consists of 4096 binary words of
length 24 of which 759 words have weight 8 (8 ones and 16 zeros), 2576 are of weight 12 and 759 have weight 16
(and of course one of weight 0, and one of weight 24). It also happens to be a quadratic residue code.

The Golay code also has connections to sphere packing since it can be used to construct the Leech lattice which is
a set of regularly spaced points in 24 dimensional space. When unit balls (balls of radius one) are placed with their
centers at the points of the Leech lattice each ball touches 196,560 neighbours and this is known to be the largest
number of non-overlapping 24-dimensional unit balls which can simultaneously touch a single unit ball (compare
with 6 in dimension 2, as the maximum number of coins which can touch a central coin).

2 The MOG and the Hexacode

The Miracle Octad Generator (MOG) of R.T.Curtis [4] [5] is a computational tool projecting the 24 Golay code
onto a [6,3,4] hexacode that makes it easy to perform calculations with these objects. Each of the characters
{0, 1, ω, ω̄} is assigned two odd interpretations and two even interpretations as follows (blank and non-blank
symbols are used instead of 0 and 1):

? ? ? ?
? ?

? ?
? ?

0 1 ω ω̄ 0 1 ω ω̄
? ? ? ?

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

The hexacode can then be used to obtain all Golay codewords and incomplete codewords can be completed easily.
The MOG can also be used to visualise partitions of the 24 points which is important as all maximal subgroups of
M24 with the exception ofL2(23) can be characterized by non-trivial partitions.

The points in the Steiner system as a projective planePG2(4) with an extra 3 points:

∞ ∞0 00 10 ω0 ω̄0
a ∞1 01 11 ω1 ω̄1
b ∞ω 0ω 1ω ωω ω̄ω
c ∞ω̄ 0ω̄ 1ω̄ ωω̄ ω̄ω̄

Left: An octad constructed from the hyperoval extending the conicX2 + Y Z = 0.
Right: An octad constructed from a Baer subplane.

? ? ? ? ? ? ?
? ? ? ?

? ?
? ? ?
1 0 0 1 ω ω̄ ω̄ 1 1 1 0 0

3 Group Theory
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Group Order Subgroup ofAut(S(5, 8, 24)) Transitivity
M24 244823040 = 210 · 33 · 5 · 7 · 11 · 23 Aut(S(5, 8, 24)) 5
M23 10200960 = 27 · 32 · 5 · 7 · 11 · 23 Stabilizer of a point. 4
M22 443520 = 27 · 32 · 5 · 7 · 11 Stabilizer of two points. 3
M12 95040 = 26 · 33 · 5 · 11 Stabilizer of a dodecad. 5
M11 7920 = 24 · 32 · 5 · 11 Stabilizer of a dodecad and a point. 4

Maximal subgroups ofM24 [1]
Group structure Partition Name

M23 1, 23 monad group
M22 : 2 2, 22 duad group
PΓL3(4) 3, 21 triad group
26 : 3 · S6 46 sextet group
24 : A8 8, 16 octad group
M12 : 2 122 dodecad group

26 : S3 × L2(7) 83 trio group
L2(23) 24 projective group
L2(7) 38 octern group

3.1 Simple Groups

The concept of a group initially arose out of a set of permutations (ways of rearranging) of some objects. The set
of permutations of some objects has three basic properties:

1. Identity - leaving the objects untouched is always a choice of rearanging them.

2. Inverse - if you can permute them one way then there is a permutation in the set that will put them back the
way there were before.

3. Associativity - if you have three permutations then doing the first two and then the last is the same as doing
the first one and then the last two.

Permutations can also be “multiplied” to get another permutation in the set where the product of two permutations
a andb is the permutation that results from doinga and thenb. Most of the interesting properties of the group of
permutations could be obtained from these simple assumptions and did not even require the assumption that the
elements of the group were permutations, just that they could be multiplied to get other elements in the group and
that the following three axioms were satisfied:

1. Identity - there is an elemente that satisfiese · a = a = a · e for everya in the group.

2. Inverse - every elementa in the group has an inversea−1 in the group that satisfiesa · a−1 = e = a−1 · a

3. Associativity - every three elements in the group satisfya · (b · c) = (a · b) · c

An important result in the study of groups that appeared in the early 20th century is that every finite group (group
with a finite number of elements) can be constructed from finite groups with an additional property called
simplicity. So the problem of classifying all finite groups is reduced to the problem of classifying all simple
groups, the “atoms” of finite group theory from which all other finite groups are made.

The classification of finite simple groups is a vast body of work, mostly published between around 1955 and 1983,
which comprises 10,000 - 15,000 pages in 500 journal articles by some 100 authors. It turns out that all finite
simple groups (of which there are an infinite number) fall into three families except for 26 of them. For this reason
the 26 remaining finite simple groups are known as sporadic.

3.2 Mathieu Groups

The Mathieu groups were first described in papers of Emile Mathieu (1861, 1873) [6] [7] and were the only
sporadic groups known to exist until 1965. They are all subgroups ofM24 and also multiply transitive.
M24,M23,M12,M11 are the only finite simple groups which are not alternating or symmetric and are more than
3-transitive. If a group isk-transitive it means that when considered as a permutation group of some points, anyk
points can be sent to anyk other points.

4 Finite Geometry

4.1 Finite Geometry

Finite Geometry is an extension of the methods of Euclid to sets with a finite number of points. Euclid’s axioms
rely only on the concept of a point, a line, and incidence. i.e. when a point is contained in a line, or a line goes
through a point. This idea can be extended into the notion of an incidence structure which consists of a set of
points, a set of blocks (the “lines”) and an incidence relation which defines which points are contained in which
blocks.

A particularly useful incidence structure is a Steiner system which satisfies the additional criterion that each block
containsk points and every set oft points is contained in a unique block. A Steiner system is notatedS(t, k, v)
wherev is the number of points,k is the number of points in a block andt is the size of the set that defines a
unique block. An example of a Steiner system is the finite projective planePG2(4) which has 21 points, each
block (line) contains 5 points and every set of 2 points is contained in a unique block (line).

The automorphism group of a Steiner system is the group of permutations of the points in the system which
maintain the block structure. i.e. if two points are in the same block before the permutation then they are in the
same block after the permutation although the block may be a different one.

4.2 The Steiner system (and relations to the Golay code)

An important Steiner system is theS(5, 8, 24) Steiner system. This system has 24 points, each block contains 8
points and every set of 5 points is contained in a unique block. This Steiner system has as its automorphism group
the Mathieu groupM24 and it is also intimately related to the Golay code. If the points are used to index the
coordinates of{0, 1}24 then each block defines a unique vector where the coordinates of points in the block are 1
and the coordinates of points that aren’t in the block are 0. The set of vectors that come from blocks ofS(5, 8, 24)
in this way are all the codewords of weight 8 in the Golay code. This process can be reversed and used to construct
S(5, 8, 24) from the Golay code.

S(5, 8, 24) can also be constructed from the projective planePG2(4) by adding an additional 3 points. The blocks
are then defined using various geometric objects such as lines, hyperovals, and Baer subplanes. The blocks are
defined roughly in the following manner (where the three additional points are labelleda, b, c):

1. Λ ∪ {a, b, c} for a lineΛ

2. O ∪ {a, b},O ∪ {a, c},O ∪ {b, c} for a hyperovalO

3. Π ∪ {a},Π ∪ {b},Π ∪ {c} for a Baer subplaneΠ

4. The symmetric difference ofΛ1 andΛ2 for two distinct linesΛ1,Λ2
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