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The aim of this project was to read Ed Witten’s paper “Quantum field theory and
the Jones polynomial” [9]. We also tried to motivate some of Witten’s heuristics using
1D quantum mechanics. This necessitated reading in topology and geometry, gauge
theory, classical mechanics, quantum mechanics, and quantum and conformal field
theory.

The Jones polynomial

An oriented link is a set of disjoint, closed 1-manifolds embedded in R3, or its com-
patification S3 = R3 ∪ {∞}. A link with two components is pictured below:

A knot is a link with one component. Two links, L1 and L2, are isotopic if there is
some homeomorphism f : S3 → S3, homotopic to the identity, mapping L1 to L2 and
preserving the orientation of components.

Let L be the set of oriented links. The Jones polynomial is an isotopy invariant
V : L → Z[t±1/2], L 7→ VL(t), defined by the condition

V�(t) = 1,

where � denotes the oriented unknot, and the linear skein relations

t−1VL+(t)− tVL−(t) = (t1/2 − t−1/2)VL0(t)

for any L ∈ L. Here, L+, L−, and L0 are three oriented links with diagrams identical
to L except at one crossing, where they differ as below:



L+ L– L0

To show that this is well defined, one uses induction on the number of crossings and
invariance under Reidemeister moves. In a spectacular (but non-rigorous) tour de
force, Witten recovers this invariant from quantum field theory.

Gauge theory

For interest, we give a brisk introduction to gauge theory. For a more leisurely devel-
opment, we refer the reader to Nakahara [6]. Mathematical treatments can be found
in Morgan [5] or Freed [2].

Let G be a Lie group. A principal G-bundle is a triple (P,B, π), P , B topological
spaces and π : P → B a continuous surjection, with a right free action · : P ×G→ P .
We also require the existence of an open cover {Uα} of B such that for each α, there
is a trivialising map φα : π−1(Uα)→ Uα ×G making the diagram

π−1(Uα)
φα- Uα ×G

Uα

π

?

p1

�

commute, where p1 is projection onto the first factor. We usually write P
π→ B,

P → B, or P (B,G) instead of the triple (P,B, π). A section on P (U,G), U ⊆ B, is a
map s : U → G such that π ◦ s = idU .

Let g be the Lie algebra of G, the vector space of left-invariant vector fields on G
equipped with the Lie bracket

[X, Y ] = XY − Y X, X, Y ∈ g.

We deal exclusively with finite-dimensional matrix Lie algebras. Let Lg and Rg denote
left- and right-translation by g ∈ G, and set Adg = Lg ◦ Rg−1 . The Maurer-Cartan
form θ : TG→ g is the canonical g-valued one-form which assigns to a vector X ∈ TG
the corresponding left-invariant vector field in g, i.e.,

L∗gθX = θX, θX|e = X.



Given P (B,G), b ∈ B, the fibre π−1(b) = Pb ' G, so TpPb ' g for any p ∈ Pb. Hence,
we can pull back θ along the inclusion ib : Pb → P to obtain i∗bθ = θb.

We now introduce the main notions of gauge theory, connections and curvature.
It was realised in the 1970s that these could be used to model (loosely speaking) the
physical equivalence of different potentials and the associated fields.

Definition 1. A connection on P (B,G) is a g-valued one-form A ∈ Ω1(P ; g) which
satisfies

1. i∗bA = θb, for all b ∈ B;

2. R∗gA = Adg−1 A, for all g ∈ G.

Denote the space of connections on P by AP . Given a local section σ and associated
basis {dxi}, we write σ∗A = Aµ dx

µ.

Definition 2. The curvature FA of A ∈ AP is defined by

FA = dA+ A ∧ A.

If FA = 0, A is called a flat connection. For a local section σ and associated basis
{dxi},

σ∗F = Fµν dx
µ ∧ dxν = (∂µAν − ∂νAµ + [Aµ, Aν ]) dx

µ ∧ dxν .

In the physics literature, σ∗A and σ∗FA are called the gauge potential and field strength
respectively.

Definition 3. A G-equivariant bundle isomorphism between P (B,G), P ′(B,G) is a
diffeomorphism Φ : P → P ′ such that

1. Φ(p · g) = Φ(p) · g, for all g ∈ G. Thus, Φ descends to Φ̄ : B → B.

2. Φ commutes with the projection,

P
Φ

- P ′

M

πP

? Φ̄
- M

πP ′

?



We let GP = Aut(P ) denote the set of G-equivariant bundle isomorphisms of P . This
is often called the set of gauge transformations.

Theorem 4. Let P (B,G) be a G-bundle. Let C∞(P,G)G denote the set of G-equivariant
maps from P to G, where G acts on itself by conjugation. Then GP and C∞(P,G)G

are isomorphic with Φ 7→ gΦ. Furthermore, if gΦ = g,

Φ∗A = Adg−1 A+ g∗θ

where θ is the Maurer-Cartan form. Since G is a matrix group, g∗θ = g−1 dg.

Proof. The correspondence GP → C∞(P,G)G is given by

Φ(p) = p · gΦ(p).

The second equation is classical. See [6].

Chern-Simons theory

Witten exploits a heuristic relation between the Lagrangian and Hamiltonian formu-
lation of a topological quantum field theory (TQFT) called quantum Chern-Simons
theory. Let M be a 3-fold, G a compact, connected, simply-connected Lie group, g
the corresponding Lie algebra, and P a principal G-bundle over M . Define the Chern-
Simons action

SCS(A) =
k

4π

∫
M

Tr[A ∧ dA+ 2
3
A ∧ A ∧ A]

for a connection A ∈ Ω1(P ; g) and a natural number k ∈ Z>0 called the level of the
theory. The parameter k describes coupling strength and is used in the asymptotic
study of Chern-Simons theory. This is integral under the action of G (i.e., defined up
to an element of R/Z), so e2πikS(A) is well defined. It is also a topological invariant.
This basic setup is called classical Chern-Simons theory.

Let AP/GP be the orbit space of gauge equivalence classes of connections over P , L
a link with components {Cj} tagged by representations {Rj} of G, and WRj

(Cj) the Rj

trace of the holonomy of Cj given a connection A. The latter are called Wilson lines.
The Lagrangian version of quantum Chern-Simons theory is based on the heuristic
path integral, aka partition function

Z(M ;L) =

∫
AP /GP

DAe2πkiSM (A)

r∏
j=1

WRj
(Cj).



At present, this integral is not defined, sinceAP/GP is a complicated, infinite-dimensional
space; putting functional integrals on a rigorous footing is one of the key programs in
contemporary mathematical physics.

In the Hamiltonian approach, we quantise the classical phase space, producing an
associated physical Hilbert space. This is similar to canonical quantisation in elemen-
tary quantum mechanics, which we discuss at greater length below. Witten’s particular
strategy is called geometric quantisation. The classical phase space (the minima of the
Chern-Simons action) may be shown to be the space of flat connections, i.e., connec-
tions A with

dA+ A ∧ A = 0.

Though generally intractable, quantisation may be performed when M = Σ × R for
some Riemann surface Σ.

One can lift the natural symplectic form on the space of flat connections to the
symplectic quotient AP//GP . This symplectic quotient is called the moduli space of
flat connections MΣ over Σ. It can also be shown that flat connections induce repre-
sentations of the fundamental group of Σ in g, hence MΣ is finite-dimensional.

Hilbert spaces and conformal field theory

In the absence of Wilson lines, the physical Hilbert space associated to MΣ is the
space of holomorphic sections of L⊗k, where L is the (projectively) flat determinant
line bundle over MΣ. In the presence of Wilson lines, the physical Hilbert space
is a more complicated object from conformal field theory (CFT) called the space of
conformal blocks.

CFT is the study of fields (in the sense of quantum field theory) which are invariant
under conformal diffeomorphisms. In 1+1 dimensions, we look at fields on the Riemann
sphere which are invariant under the action of the Möbius group PGL(2,C). Using
the operator product expansion (OPE) for two non-chiral, quasi-primary fields and
the elementary theory of PGL(2,C), a 4-point operator G(z, z̄), z, z̄ ∈ C4, may be
expanded as a linear combination of functions related to the representations {Rj}.
These functions are called conformal blocks and form a finite-dimensional vector space.

Recovering the Jones polynomial

Embed a link L = {Cj} in S3, with G = SU(n) and Rj the usual Cn-representation of
G. We draw a surface Σ = S2 around a configuration corresponding to a crossing in a



diagram of L. This splits S3 into two parts, M1 and M2, which are both diffeomorphic
to products S2 × A for some A ⊆ R.

M1

M2

L

The path integrals Z(Mi;L|Mi
), i = 1, 2, determine vectors φ, ψ in the Hilbert spaces

Hi associated to the boundaries of the Mi. These have opposite orientations, so there
is a natural pairing (φ, ψ), and from the general (heuristic) ideas of QFT

(φ, ψ) = Z(S3;L) ≡ Z(L).

It can be shown that the Hi is 2-dimensional. If we rewire M2 in two different ways
(see below) we get two additional vectors ψ1, ψ2, so there is a relation

αψ + βψ1 + γψ2 = 0.

Dotting with φ on the left, we get:

αZ(L) + βZ(L1) + γZ(L2) = 0.

Here, the Li are obtained by gluing the rewired versions of M2 back to M1.

L0 L-

1 2

3 4

B 1 2

L+

B B



These three configurations differ from each other by a “twist” or “half monodromy”
of the sphere called B (a diffeomorphism of S2). With reference to the figure above,
B swaps the strands at 1 and 2 by a ccw rotation; it fixes the strands at 3 and 4. B
induces a linear operator on HS2 , which for simplicity we also call B. Since B operates
on a 2-dimensional vector space, the Cayley-Hamilton theorem implies:

B2 −B TrB + detB = 0.

Further, we have ψ2 = Bψ1 = B2ψ, so acting on ψ yields:

detB · ψ − TrB · ψ1 + ψ2 = 0.

The operator B Dehn twists framings of links in S3, so adding correction factors to
recover the canonical framings gives:

α = detB, β = e−πi(N
2−1)/N(N+k) TrB, γ = e−2πi(N2−1)/N(N+k).

By Moore and Seiberg’s results on B for G = SU(N), we have:

α = −e2πi/(N(N+k)), β = −eiπ(2−N−N2)/N(N+k) + eiπ(2+N−N2)/N(N+k).

We can divide out eiπ(N2−2)/N(N+k), and substitute q = e2πi/(N+k) to yield the relation:

−qN/2Z(L) + (q1/2 − q−1/2)Z(L1) + q−N/2Z(L2) = 0.

But in the terminology of the Jones polynomial, L = L+, L1 = L0, and L2 = L−.
Setting N = 2, we recover the linear skein relations, with q = t. It can also be shown
that:

Z(�) = −α + β

γ
=
qN/2 − q−N/2

q1/2 − q−1/2
= 1

for N = 2. Thus, the Jones polynomial may be viewed as the partition function of a
quantum Chern-Simons theory with gauge group SU(2).

Research

One focus of my research was pedagogical—trying to understand Chern-Simons the-
ory (and more generally TQFTs) by analogy with 1D quantum mechanics, and in
particular, the connection between Hamiltonian and Lagrangian approaches.

We begin with the Hamiltonian. In the 1D case, we usually quantise a classical
theory—a Hamiltonian formalism in terms of phase space (with a configuration space
of position variables) and Poisson bracket {·, ·}. To get the corresponding quantum
theory, we canonically quantise by making the following replacements:



• configuration space → Hilbert space H of functions on the configuration space

• variables → linear operators on H

• {·, ·} → − 1
i~ [·, ·].

See Shankar [8] for further details. This canonical quantisation is analogous to geo-
metric quantisation in Chern-Simons theory. In Chern-Simons theory, however, the
configuration space is replaced by the space of classical solutions (the flat connections)
for a principal G-bundle over Σ, and the function space with a sequence of “lifts”:

flat connections → moduli space M of flat connections → vector bundle over M.

This is precisely the sequence of lifts needed to eliminate dependence on the complex
structure of Σ.

We now consider the 1D version of the partition function. To find the dynamics in
a 1D quantum system, we solve the Schrödinger equation

(i~∂t −H)ψ = 0

where H is the quantum Hamiltonian operator. Usually, we first solve the time inde-
pendent Schrödinger equation, yielding a Green’s function called the propagator U . In
the 1D case, the propagator U(x′, x; ∆t) evolves a delta function at x ∈ R a time ∆t
using the Schrödinger equation, then samples the resulting wave function at x′:

x

∆t

x'

∞

U(x, x'; ∆t)

We can express an initial wave function as an integral of deltas and evolve them
independently.

In the Lagrangian approach to 1D quantum mechanics, the propagator U(x′, x; ∆t)
is given directly as a path integral. Let P denote the set of continuous time-parameterised
paths γ : [0,∆t]→ R with γ(0) = x and γ(∆t) = x′. Suppose that we have an action
S : P → R from the classical description. Then Schrödinger’s equation implies that:

U(x′, x; ∆t) =

∫
γ∈P

eS[iγ] dP .



For a derivation, see [8]. The expression eiS[γ] is called the phase of the path. Of course,
the formal structure of Witten’s partition function is similar to this 1D path integral,
with connections replacing paths, and the measure keeping track of the topology via
Wilson lines.

Note that we can look at an intermediate time t′ between 0 and t:

(t, x')

(0, x)

xint

t'

We can split a path between (0, x) and (∆t, x′) at the vertical line at t′. Since the prop-
agator is multiplicative, we factorise and then integrate over the point of intersection
xint to get

U(x′, x; t) =

∫
R
U(xint, x; t′)U(x′, xint; t− t′) dxint.

There are three notable features:

• we are using propagators on subspaces with shared boundary;

• we combine them with an inner product-like thing to get the full propagator;

• in the integrand, the functions U(xint, x; t′) and U(x′, xint; t− t′) depend only on
position xint, hence live in our Hilbert space.

These three features also appear in Witten’s theory. We combine partition functions
on M1 and M2 with an inner product to recover the whole partition function; this
inner product is defined because M1 and M2 share a boundary. Moreover, partition
functions evaluate to elements of the corresponding physical Hilbert space. Thus, Wit-
ten’s heuristic expectations for quantum Chern-Simons theory are not so different from
elementary quantum mechanics!

Thinking of the diffeomorphism B as a braid action on the two strands, we con-
sidered the possibility that braid actions on n strands might have well-understood
conformal representations. Using Witten’s strategy, these could yield interesting skein
relations between local “perturbations” of a link with n inputs. Unfortunately, we did
not have time to develop these ideas further.
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