

Quantification of synchronisation within coupled Lorenz systems Adam Hoare, School of Mathematics and Applied Statistics, University of Wollongong

Background

My project was based on the theories of chaos and synchronisation. In 1963, Edward Lorenz, a meteorologist, derived the now famous Lorenz equations from a simplified model of thermal convection [2]. The equations are renowned for both their 'chaotic' behaviour and the creation of the butterfly 'strange attractor'.

The focus of my project was to investigate the synchronisation properties of a model consisting of two coupled Lorenz systems. The coupled system is shown below:

$$\dot{X}_{1} = -\sigma X_{1} + \sigma Y_{1}$$

$$\dot{Y}_{1} = -X_{1}Z_{1} + r_{1}X_{1} - Y_{1}$$

$$\dot{Z}_{1} = X_{1}Y_{1} - bZ_{1}$$

$$\dot{X}_{2} = -\sigma X_{2} + \sigma Y_{2} + d(X_{1} - X_{2})$$

$$\dot{Y}_{2} = -X_{2}Z_{2} + r_{2}X_{2} - Y_{2} + d(Y_{1} - Y_{2})$$

$$\dot{Z}_{2} = X_{2}Y_{2} - bZ_{2} + d(Z_{1} - Z_{2})$$

where *d* is the coupling strength, σ =10, b= $\frac{8}{3}$ and r_1 , r_2 are control parameters.

Chaotic synchronisation implies a perfect linking of chaotic trajectories, in which they evolve in step. In a general sense, synchronisation involves the process of 'feedback' where the output of one system is given to a function of the output of the other system. In a geophysical context, the coupled Lorenz system provides a paradigm for the mutual interaction between chaotic extratropical circulation patterns in two geographical regions [1].

Research

In my research I developed a method that provides a representation of the degree of synchronisation between two coupled chaotic systems. I also investigated how the behaviour of the system depended upon the coupling strength 'd', perturbations to the initial conditions, and the time period of integration. From my results I concluded that a coupling strength of at least d=0.52 will inevitably produce perfect synchronisation. At this strength a perturbation of the initial conditions simply produces a transient synchronisation phase.

Summary

My project was both a success and a fantastic experience. It broadened my view of mathematics, enhanced my research techniques and helped develop many faculty contacts.

References

- [1] A. Stefanski et al., Physica D 98 (1996) 594-598. Dynamics of coupled Lorenz systems and its geophysical implications
- [2] E.H. Lorenz, J. Atmospheric Sci. 20 (1963) 130. Deterministic Nonperiodic Flow

Adam received an ICE-EM Vacation Scholarship in January 2005. See www.ice-em.org.au/students.html#scholarship.