Group Actions on the Cohomology of Hyperplane Complements

National

^{in the} Mathematical

Sciences

Ragib Zaman

February 28, 2013

This project has studied the topological space M obtained from \mathbb{C}^l by removing a finite set of hyperplanes \mathcal{A} . Associated to this space is its cohomology ring, which contains information about the topology of the space. When there is a symmetry group G acting on \mathcal{A} , it also acts on the cohomology ring $H^*(M) = \bigoplus_{n \in \mathbb{N}} H^n(M)$ and we study the representation $T : G \to GL(H^*(M))$. An important special case is the space of configurations $M_l = \{(z_1, \dots, z_l) \in \mathbb{C}^l : z_i \neq z_j \text{ if } i \neq j\}$ with $G = S_l$.

Cohomology

AUSTRALIAN MATHEMATICAL

SCIENCES INSTITUTE

Let $M \subset \mathbb{C}^l$ be a smooth manifold. One way to compute the cohomology spaces $H^n(M, \mathbb{C})$ is to use the vector spaces $\Omega^n(M)$ of holomorphic n-differential forms on M. These are expressions of the form $\omega = \sum f_{i_1,\dots,i_n} dx_{i_1} \wedge \dots \wedge dx_{i_n}$ where $1 \leq i_1 < \dots < i_n \leq l$ and f_{i_1,\dots,i_n} are holomorphic functions from M to \mathbb{C} . The wedge \wedge is a product on these forms, and has the property that $dx_i \wedge dx_j = -dx_j \wedge dx_i$.

Definition 0.1 The exterior derivative d acts on n-forms and outputs n+1-forms by the following rule: If ω is as above, then

$$d\omega = \sum_{j=1}^{l} \sum \frac{\partial f_{i_1, \cdots, i_n}}{\partial x_j} dx_j \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_n}.$$

Let d_n be the restriction of the exterior derivative to the n-forms. The de Rham complex of M is the following sequence of vector spaces and maps:

 $0 \to \Omega^0(M) \stackrel{d_0}{\to} \Omega^1(M) \stackrel{d_1}{\to} \Omega^2(M) \stackrel{d_2}{\to} \Omega^3(M) \stackrel{d_3}{\to} \cdots$

An important property of the exterior derivative is that $\forall n, (d_{n+1} \circ d_n)(\omega) = 0$ for any differential n-form ω . This implies that the image of d_n is contained in the kernel of d_{n+1} , so the quotient ker $d_{n+1}/\operatorname{im} d_n$ is well defined. We define the n-th cohomology group of M to be $H^n(M) = \ker d_n/\operatorname{im} d_{n-1}$ and the cohomology group of M to be $H^*(M) = \bigoplus_{n \in \mathbb{N}} H^n(M)$. H^* inherits a ring structure from $\Omega^*(M) = \bigoplus_{p \in \mathbb{N}} \Omega^p(M)$.

Hyperplane Complements

Definition 0.2 Suppose V is a vector space of dimension l over a field k. A hyperplane H in V is a vector subspace of dimension l - 1. An arrangement A is a finite set of hyperplanes in V.

Example 0.3 Considering \mathbb{R}^3 as a real vector space, a hyperplane is simply a plane through the origin.

Definition 0.4 If \mathcal{A} is an arrangement of hyperplanes, then $M_{\mathcal{A}} = V \setminus \bigcup_{H \in \mathcal{A}} H$ is said to be a hyperplane complement. A special example is the arrangement $\mathcal{A} = \{H_{ij} : x_i - x_j = 0\}$ which yields the hyperplane complement $M_{\mathcal{A}} = \{(x_1, \dots, x_l) : x_i \neq x_j \text{ if } i \neq j\} \subseteq \mathbb{C}^l$. This space is called a configuration space.

From this point we will always take the underlying field to be $k = \mathbb{C}$. Orlik and Solomon were able to obtain a generators and relations description of the cohomology ring $H^*(M_{\mathcal{A}})$ when A is a complex arrangement. For a hyperplane $H \in \mathcal{A}$ we define the 1-form $\omega_H = \frac{dL_H}{L_H}$ where L_H is a linear form such that ker $L_H = H$.

Example 0.5 If H is given by the equation $x_1 - x_2 = 0$ then

$$\omega_H = \frac{d(x_1 - x_2)}{x_1 - x_2} = \frac{1}{x_1 - x_2} dx_1 - \frac{1}{x_1 - x_2} dx_2.$$

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

Theorem 0.6 (Orlik-Solomon) $H^*(M_A)$ is generated as an associative algebra by $\{[\omega_H] : H \in A\}$ where $[\omega_H]$ is the image of ω_H under the quotient map used to define the cohomology groups. All the relations these generators satisfy may be deduced from: 1)

$$\omega_H \wedge \omega_{H'} = -\omega_{H'} \wedge \omega_H$$

2) If H_1, \dots, H_k are hyperplanes such that L_1, \dots, L_k are linearly dependent (so that the codimension of $\cap H_i$ is less than k) then

$$\sum_{i=1}^{k} (-1)^{i} \omega_{H_{1}} \wedge \dots \wedge \widehat{\omega_{H_{i}}} \wedge \dots \wedge \omega_{H_{k}} = 0$$

where the hat denotes omission of that term.

Example 0.7 If H_{ij} denotes the hyperplane with equation $x_i - x_j = 0$, then H_{12}, H_{23}, H_{13} are linearly dependent since $(x_1 - x_2) + (x_2 - x_3) - (x_1 - x_3) = 0$. So then we have $-\omega_{H_{23}} \wedge \omega_{H_{13}} + \omega_{H_{12}} \wedge \omega_{H_{13}} - \omega_{H_{12}} \wedge \omega_{H_{23}} = 0$.

Recall the configuration space $M_l = M_A \subseteq \mathbb{C}^l$ where $\mathcal{A} = \{H_{ij} : z_i - z_j = 0\}$. The symmetric group on l letters, S_l , acts on M_l by permutation of coordinates, and this action transfers to an action on the cohomology ring $H^*(M_l)$. The action of $\pi \in S_l$ on $\omega_{ij} = \omega_{H_{ij}}$ is given by the rule

$$\pi\omega_{ij} = \omega_{\pi i,\pi j}$$

Example 0.8 M_3 is the space obtained by removing the planes

$$H_{12}: z_1 - z_2 = 0, H_{23}: z_2 - z_3 = 0, H_{13}: z_1 - z_3 = 0$$

from \mathbb{C}^3 . The cycle (13) $\in S_3$ acts on a point $(z_1, z_2, z_3) \in M_3$ to produce (z_3, z_2, z_1) . By the previous theorem, the cohomology ring $H^*(M_3)$ is generated by the forms $\omega_{12} = \frac{d(z_1-z_2)}{z_1-z_2}, \omega_{23} = \frac{d(z_2-z_3)}{z_2-z_3}$ and $\omega_{13} = \frac{d(z_1-z_3)}{z_1-z_3}$. S_3 acts on the cohomology ring. E.g. The cycle $\pi = (132)$ acts on the first generator as such: $\pi\omega_{12} = \omega_{31}$.

In 1987, G.I. Lehrer computed trace $(g, H^p(M_n))$ for $g \in S_n$ - that is, the trace of the linearized action of each element of S_n on the *p*-th cohomology group of M_n .

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

Remark 0.9 The trace is invariant under conjugacy, and each conjugacy class of the symmetric group is determined by the cycle types. So up to conjugacy, $g \sim l_1^{n_1} l_2^{n_2} \cdots l_r^{n_r}$. Since g has n_i cycles of length l_i we have the condition that $\sum n_i l_i = n$.

Theorem 0.10 (G.I. Lehrer, 1987) : Suppose g has cycle type $l_1^{n_1} l_2^{n_2} \cdots l_r^{n_r}$. Define the Poincaré polynomial of M_n by

$$P(g,t) = \sum_{p \in \mathbb{N}} \operatorname{trace}(g, H^p(M_n))t^p.$$

Let $p_n(t) = \sum_{d|n} \mu(n/d)(-t)^{n-d}$ where $\mu(n)$ is the Möbius function, which is defined to be be 1, -1 if n is square-free with an even or odd number of prime factors respectively, and 0 if n is not square-free. E.g $p_1(t) = 1, p_2(t) = 1 + t, p_3(t) = 1 - t^2$. Then $P(g,t) = P_1(t)P_2(t)\cdots P_r(t)$ where

$$P_{i}(t) = p_{l_{i}}(t) \left(p_{l_{i}}(t) - l_{i}(-t)^{l_{i}} \right) \left(p_{l_{i}}(t) - 2l_{i}(-t)^{l_{i}} \right) \cdots$$
$$\cdots \left(p_{l_{i}}(t) - (n_{i} - 1)l_{i}(-t)^{l_{i}} \right)$$

Corollary 0.11 In 1969 V.I. Arnold computed the dimensions of the vector spaces $H^p(M_n, \mathbb{C})$. The trace of the identity is simply the dimension of the space so his result can be rephrased as

$$P(1,t) = (1+t)(1+2t)\cdots(1+(n-1)t).$$

Proof 0.12 The identity on the symmetric group with n elements has cycle type $(1)^n$ - it has n cycles, each of length 1. So by the previous theorem, we have

$$P(1,t) = P_1(t)$$

$$= p_1(t)(p_1(t) - (-t)^1)(p_1(t) - 2(-t)^1) \cdots (p_1(t) - (n-1)(-t)^1).$$

Since $p_1(t) = 1$, this simplifies to V.I. Arnold's result.

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

Bibliography

G.I Lehrer and Louis Solomon, "On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes", Journal of Algebra 104, pg 410-424, 1986

Peter Orlik, "Introduction to Arrangements", CBMS, 1988, ISBN 0-8218-0723-4

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia