
Group Actions on the Cohomology of Hyperplane

Complements

Ragib Zaman

February 28, 2013

This project has studied the topological space M obtained from Cl by removing

a finite set of hyperplanes A. Associated to this space is its cohomology ring, which

contains information about the topology of the space. When there is a symmetry group

G acting on A, it also acts on the cohomology ring H∗(M) =
⊕

n∈NH
n(M) and we

study the representation T : G→ GL(H∗(M)). An important special case is the space

of configurations Ml = {(z1, · · · , zl) ∈ Cl : zi 6= zj if i 6= j} with G = Sl.

Cohomology

Let M ⊂ Cl be a smooth manifold. One way to compute the cohomology spaces

Hn(M,C) is to use the vector spaces Ωn(M) of holomorphic n-differential forms on M.

These are expressions of the form ω =
∑
fi1,··· ,indxi1 ∧ · · · ∧ dxin where 1 ≤ i1 < · · · <

in ≤ l and fi1,··· ,in are holomorphic functions from M to C. The wedge ∧ is a product

on these forms, and has the property that dxi ∧ dxj = −dxj ∧ dxi.

Definition 0.1 The exterior derivative d acts on n-forms and outputs n+1-forms by

the following rule: If ω is as above, then

dω =
l∑

j=1

∑ ∂fi1,··· ,in
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxin .

Let dn be the restriction of the exterior derivative to the n-forms. The de Rham complex

of M is the following sequence of vector spaces and maps:



0→ Ω0(M)
d0→ Ω1(M)

d1→ Ω2(M)
d2→ Ω3(M)

d3→ · · ·

An important property of the exterior derivative is that ∀n, (dn+1 ◦ dn)(ω) = 0 for any

differential n-form ω. This implies that the image of dn is contained in the kernel of

dn+1, so the quotient ker dn+1/ im dn is well defined. We define the n-th cohomology

group of M to be Hn(M) = ker dn/ im dn−1 and the cohomology group of M to be

H∗(M) =
⊕

n∈NH
n(M). H∗ inherits a ring structure from Ω∗(M) =

⊕
p∈N Ωp(M).

Hyperplane Complements

Definition 0.2 Suppose V is a vector space of dimenson l over a field k. A hyperplane

H in V is a vector subspace of dimension l − 1. An arrangement A is a finite set of

hyperplanes in V.

Example 0.3 Considering R3 as a real vector space, a hyperplane is simply a plane

through the origin.

Definition 0.4 If A is an arrangement of hyperplanes, then MA = V \
⋃
H∈AH is

said to be a hyperplane complement. A special example is the arrangement A = {Hij :

xi − xj = 0} which yields the hyperplane complement MA = {(x1, · · · , xl) : xi 6=
xj if i 6= j} ⊆ Cl. This space is called a configuration space.

From this point we will always take the underlying field to be k = C. Orlik and

Solomon were able to obtain a generators and relations description of the cohomology

ring H∗(MA) when A is a complex arrangement. For a hyperplane H ∈ A we define

the 1-form ωH = dLH

LH
where LH is a linear form such that kerLH = H.

Example 0.5 If H is given by the equation x1 − x2 = 0 then

ωH =
d(x1 − x2)
x1 − x2

=
1

x1 − x2
dx1 −

1

x1 − x2
dx2.



Theorem 0.6 (Orlik-Solomon) H∗(MA) is generated as an associative algebra by

{[ωH ] : H ∈ A} where [ωH ] is the image of ωH under the quotient map used to define

the cohomology groups. All the relations these generators satisfy may be deduced from:

1)

ωH ∧ ωH′ = −ωH′ ∧ ωH

2) If H1, · · · , Hk are hyperplanes such that L1, · · · , Lk are linearly dependent (so

that the codimension of ∩Hi is less than k) then

k∑
i=1

(−1)iωH1 ∧ · · · ∧ ω̂Hi
∧ · · · ∧ ωHk

= 0

where the hat denotes omission of that term.

Example 0.7 If Hij denotes the hyperplane with equation xi−xj = 0, then H12, H23, H13

are linearly dependent since (x1 − x2) + (x2 − x3) − (x1 − x3) = 0. So then we have

−ωH23 ∧ ωH13 + ωH12 ∧ ωH13 − ωH12 ∧ ωH23 = 0.

Recall the configuration space Ml = MA ⊆ Cl where A = {Hij : zi − zj = 0}. The

symmetric group on l letters, Sl, acts on Ml by permutation of coordinates, and this

action transfers to an action on the cohomology ring H∗(Ml).

The action of π ∈ Sl on ωij = ωHij
is given by the rule

πωij = ωπi,πj.

Example 0.8 M3 is the space obtained by removing the planes

H12 : z1 − z2 = 0, H23 : z2 − z3 = 0, H13 : z1 − z3 = 0

from C3. The cycle (13) ∈ S3 acts on a point (z1, z2, z3) ∈ M3 to produce (z3, z2, z1).

By the previous theorem, the cohomology ring H∗(M3) is generated by the forms ω12 =
d(z1−z2)
z1−z2 , ω23 = d(z2−z3)

z2−z3 and ω13 = d(z1−z3)
z1−z3 . S3 acts on the cohomology ring. E.g. The

cycle π = (132) acts on the first generator as such: πω12 = ω31.

In 1987, G.I. Lehrer computed trace(g,Hp(Mn)) for g ∈ Sn - that is, the trace of the

linearized action of each element of Sn on the p-th cohomology group of Mn.



Remark 0.9 The trace is invariant under conjugacy, and each conjugacy class of the

symmetric group is determined by the cycle types. So up to conjugacy, g ∼ ln1
1 l

n2
2 · · · lnr

r .

Since g has ni cycles of length li we have the condition that
∑
nili = n.

Theorem 0.10 (G.I. Lehrer, 1987) : Suppose g has cycle type ln1
1 l

n2
2 · · · lnr

r . Define

the Poincaré polynomial of Mn by

P (g, t) =
∑
p∈N

trace(g,Hp(Mn))tp.

Let pn(t) =
∑

d|n µ(n/d)(−t)n−d where µ(n) is the Möbius function, which is de-

fined to be be 1,−1 if n is square-free with an even or odd number of prime factors

respectively, and 0 if n is not square-free. E.g p1(t) = 1, p2(t) = 1 + t, p3(t) = 1 − t2.
Then P (g, t) = P1(t)P2(t) · · ·Pr(t) where

Pi(t) = pli(t)
(
pli(t)− li(−t)li

) (
pli(t)− 2li(−t)li

)
· · ·

· · ·
(
pli(t)− (ni − 1)li(−t)li

)
Corollary 0.11 In 1969 V.I. Arnold computed the dimensions of the vector spaces

Hp(Mn,C). The trace of the identity is simply the dimension of the space so his result

can be rephrased as

P (1, t) = (1 + t)(1 + 2t) · · · (1 + (n− 1)t).

Proof 0.12 The identity on the symmetric group with n elements has cycle type (1)n

- it has n cycles, each of length 1. So by the previous theorem, we have

P (1, t) = P1(t)

= p1(t)(p1(t)− (−t)1)(p1(t)− 2(−t)1) · · · (p1(t)− (n− 1)(−t)1).

Since p1(t) = 1, this simplifies to V.I. Arnold’s result.
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