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This project has studied the topological space M obtained from C' by removing
a finite set of hyperplanes A. Associated to this space is its cohomology ring, which
contains information about the topology of the space. When there is a symmetry group
G acting on A, it also acts on the cohomology ring H*(M) = @, .y H"(M) and we
study the representation 7' : G — GL(H*(M)). An important special case is the space
of configurations M; = {(z1,- -+, 2) € C': z; # z; if i # j} with G = S;.

Cohomology

Let M C C! be a smooth manifold. One way to compute the cohomology spaces
H"(M,C) is to use the vector spaces (2"(M) of holomorphic n-differential forms on M.
These are expressions of the form w = > f;, .. i, dxy, A--- Adx;, where 1 <4y <--- <
in <land f;, . ;
on these forms, and has the property that dz; A dov; = —dx; A dz;.

are holomorphic functions from M to C. The wedge A is a product

n

Definition 0.1 The exterior derivative d acts on n-forms and outputs n+1-forms by
the following rule: If w is as above, then

Ofiy i
dw:zzé;—mjdxj/\dxil A« Ndxy,.

Let d,, be the restriction of the exterior derivative to the n-forms. The de Rham complex

of M is the following sequence of vector spaces and maps:
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An important property of the exterior derivative is that Vn, (d,+1 0 dy)(w) =0 for any
differential n-form w. This implies that the image of d, is contained in the kernel of
dyy1, so the quotient kerd,1/imd,, is well defined. We define the n-th cohomology
group of M to be H*(M) = kerd,/imd,_1 and the cohomology group of M to be
H*(M) =@, oy H"(M). H* inherits a ring structure from Q*(M) = D, 2(M).

Hyperplane Complements

Definition 0.2 Suppose V is a vector space of dimenson | over a field k. A hyperplane
H in V' is a vector subspace of dimension | — 1. An arrangement A is a finite set of

hyperplanes in V.

Example 0.3 Considering R® as a real vector space, a hyperplane is simply a plane
through the origin.

Definition 0.4 If A is an arrangement of hyperplanes, then My =V \ Uges H is
said to be a hyperplane complement. A special example is the arrangement A = {H,; :
z; —x; = 0} which yields the hyperplane complement Ma = {(z1,--- ,2) : x; #
z; if i # j} € Cl. This space is called a configuration space.

From this point we will always take the underlying field to be & = C. Orlik and
Solomon were able to obtain a generators and relations description of the cohomology
ring H*(M_4) when A is a complex arrangement. For a hyperplane H € A we define

the 1-form wy = ‘%—; where Ly is a linear form such that ker Ly = H.

Example 0.5 If H is given by the equation x4 — x9 = 0 then

d(xy — x2) 1 1
wg = = dl’l — dIL‘Q.
1 — T2 r1 — T2 T1 — T2
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Theorem 0.6 (Orlik-Solomon) H*(M4) is generated as an associative algebra by

{lwr| : H € A} where [wg] is the image of wy under the quotient map used to define

the cohomology groups. All the relations these generators satisfy may be deduced from:
1)

Wy /\(,UH/ = —Wg /\(,L)H

2) If Hy,--- , Hy, are hyperplanes such that Ly,--- , Ly are linearly dependent (so
that the codimension of NH; is less than k) then

k

> (=Vwp, Ao Ao, A Awg, =0
=1

where the hat denotes omission of that term.

Example 0.7 If H;; denotes the hyperplane with equation x;—x; = 0, then Hya, Haz, Hys
are linearly dependent since (r1 — x2) + (v3 — x3) — (x1 — x3) = 0. So then we have

—WHy; A WH,3 + WHy, A WHy3 — WHy, A WHy3 = 0.

Recall the configuration space M; = M4 C C' where A = {H,; : 2; — z; = 0}. The
symmetric group on [ letters, S;, acts on M; by permutation of coordinates, and this
action transfers to an action on the cohomology ring H*(M,).

The action of m € S; on w;; = wpg,; is given by the rule
TWij = Wi rj-
Example 0.8 M; is the space obtained by removing the planes
Hi:21—20=0,Ho3:29—23=0,Hi3:21 —23=0

from C3. The cycle (13) € Sz acts on a point (21, 29, 23) € M3 to produce (23, 22, 21).
By the previous theorem, the cohomology ring H*(Mj3) is generated by the forms wis =

d(z1— d(z2—
=) o = M2m2) gpg 0 =
21—22 22—2Z3

cycle m = (132) acts on the first generator as such: Twis = wsy.

d(z1—23

21—23)' S3 acts on the cohomology ring. E.g. The

In 1987, G.I. Lehrer computed trace(g, H?(M,,)) for g € S,, - that is, the trace of the
linearized action of each element of S,, on the p-th cohomology group of M,,.
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Remark 0.9 The trace is invariant under conjugacy, and each conjugacy class of the
symmetric group is determined by the cycle types. So up to conjugacy, g ~ [7*15 - -1
Since g has n; cycles of length l; we have the condition that »_ n;l; = n.

Theorem 0.10 (G.I. Lehrer, 1987) : Suppose g has cycle type 1715 - - - ['". Define
the Poincaré polynomial of M, by

P(g,t) =) trace(g, H"(M,))t".

peN

Let pua(t) = > g p(n/d)(—t)"=¢ where p(n) is the Mdobius function, which is de-
fined to be be 1,—1 if n is square-free with an even or odd number of prime factors
respectively, and 0 if n is not square-free. E.g pi(t) = 1,pa(t) = 1+ t,p3(t) = 1 — 2
Then P(g,t) = Pi(t)Pa(t) - - P.(t) where

Py(t) = pi, (t) (i, (t) = Li(—)") (p, (t) — 20:(=1)") - -

(o) = (s = DI(=1)")

Corollary 0.11 In 1969 V.I. Arnold computed the dimensions of the vector spaces
HP(M,,, C). The trace of the identity is simply the dimension of the space so his result

can be rephrased as
P(Lit)=(1+t)(1+2t)---(1+ (n—1)t).

Proof 0.12 The identity on the symmetric group with n elements has cycle type (1)"
- it has n cycles, each of length 1. So by the previous theorem, we have

P(1,t) = P (t)

= pi(t)(pr(t) = (=) ) (pr(t) = 2(=1)") -+~ (pa (1) — (0 — 1)(=1)").

Since p1(t) = 1, this simplifies to V.I. Arnold’s result.
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