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Summary 

 

In this paper, we look at a simple model for the bone remodeling process. In particular, 

we are interested in the two main cells that participate in this process – osteoblasts, the 

cells that form bone, and osteoclasts, the cells that remove bone, as well as how these 

cells affect the amount of bone over time. Our model consists of three differential 

equations and includes biochemical, mechanical and geometric feedback. First, we 

investigate the properties of the steady states of our equations, before moving on to a 

stability analysis. Finally, we apply beam theory to the system. 

 

1. Introduction 

 

We construct a mathematical model of bone using three differential equations. The main 

variables we are concerned with are the populations of two key types of cell and how 

these affect the volume of bone over time. 

 



 
 

2 
 
 

Of course, this kind of modelling has been attempted before in an even more 

complex way than we show here. The more complex models included the effects of 

proteins, protein receptors and hormones. However, it was difficult to study the stability 

of the steady states in those models, and it also proved arduous to extend those models 

to include mechanical effects. We aim to overcome these issues by using a simpler 

model. 

 

 

Figure 1: The cells that act in bone (Modified from Buenzli et al. 2013). 

 

The two types of cells we are looking at are osteoblasts, the cells that form new 

bone, and osteoclasts, the cells that resorb old bone. These cells exist in the pores of the 

bone. The pores are simply the holes in the bone, as depicted in Figure 1. It is clear that 

the populations of each of these types of cells are dependent on each other, so it is 

important to cater for this in the model by coupling two of the differential equations. 

Coupling means that the equations are expressed such that the two quantities are not 

independent of each other. In our case, this means that the differential equation for 

osteoblasts is dependent on the osteoclast population and the differential equation for 

osteoclasts is dependent on the osteoblast population. 
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We want to include three differential factors in our model: biochemical, 

mechanical and geometric. The biochemical interactions between osteoblasts and 

osteoclasts are reflected in the first two differential equations. The other factors are 

introduced in the final differential equation. 

 

The application of our model is to the bone remodeling process. Depending on 

the success of the initial analysis, the model could be extended to further our 

understanding of bone disorders such as osteoporosis. 

 

 

2. Method/Results 

 

Table of terms 

 

The scale of our equations is according to the representative volume element (2-8 mm
3
). 

Many of the variables have been scaled by the representative volume element (VT). 

 

Term Definition Units Restriction 

OB, OC Osteoblast/osteoclast density (number 

of cells divided by VT) 

Time ≥0 

t Time Time ≥0 

kOB, kOC Functions describing biochemical 

coupling between OB and OC 

Time ≥0 

AOB, AOC Apoptosis (death) rates 1/Time ≥0 

fbm Bone volume fraction (fraction of 

bone in the representative volume 

element) 

None [0,1] 

kform, kres Constants describing the rate of 

formation and resorption (technically 

relating to a single cell) 

Volume/Time ≥0 
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Assumptions of model 

 

   

  
        ̅̅ ̅̅ (   ( )) 

 

   

  
        ̅̅ ̅̅ (   ( )) 

 

(Where the bar indicates the steady state.) 

This assumption is valid because of the ‘separation of the time scale’ – cell 

behavior occurs much faster than the rate at which bone changes. 

 

Other restrictions: 

 OB and OC must be non-negative as we cannot have a negative density of cells. 

 The functions kOB and kOC are non-negative as otherwise we can have cases 

where the growth term is negative. 

 The constants AOB and AOC are non-negative as otherwise the death/decay term 

is negative. 

 

Deriving the model 

 

We start with: 

 

   (   )

  
    

  

   (   )    
        

 

Here, r is a spatial vector, t is time and COB is a constant. The reason we have a 

non-linear form is discussed in the appendix. 

 

kOB(fbm) and OC must be in the same units as they are being added together in 

the denominator of the first term. This means the following term is dimensionless (as 

the numerator has the same units as the denominator): 
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   (     )    
 

 

AOB is an apoptosis (death) rate and hence is in the units of ‘density/time’. Since 

OB has units of ‘density’, AOB   OB has the units ‘1/time’. 

 

In order to have the subtraction in the middle, COB is required to have the units 

‘1/time’. Then we simply divide both sides by COB and set: 

 

  
  

   
     (     )  

   (     )

   
 

 

For our shorthand, we can also write: 

 

        
  

   
 

 

And we have our main equation: 

 

  (   )

  
 
 

   
    

 

 

By making a few more substitutions, we can derive the equation for y/OC using 

a similar method: 

 

 

         (     )  
   (     )

   
 

 

These substitutions have been important as they reduce the number of 

parameters in the model from six to four. 
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Main equations 

 

For simplicity, let us ignore the dependence of x and y on the spatial vector for the 

moment, transforming the equations into ordinary differential equations. 

 

  

  
 
 

   
    

(1) 

  

  
 
 

   
    

(2) 

 

These first two equations are coupled, which means that OB depends on OC and 

OC depends on OB. They are both comprised of two parts – a source/growth term and a 

sink/decay term. 

 

Calculations from these two equations can then be considered in a third 

equation: 

 

    (   )

  
 (              )(     (   )) 

 

But without the dependence on r, setting fbm as f and using our simplified 

notation, this becomes: 

 

  

  
  ( )  (            )(   ) 

(3) 

 

 

We can visualise the model in the following fashion: 
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Now, we will analyse (1) and (2) initially, before looking at (3) later on. 

 

 

2a. Analysing the two biochemical equations 

 

Steady states of osteoblasts and osteoclasts from equations (1) and (2) 

 

For the steady states, it is clear that upon inspection of (1) and (2), there is a zero steady 

state as x=0 and y=0 is a solution to the differential equations. 

 

For the non-zero steady state, we set: 

 

  

  
      

  

  
   

 

Solving for x and y gives us: 

 

 ̅  
      

 (    )
 

(4) 

 ̅  
      

 (    )
 

(5) 
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Steady states span the entire space 

 

It is easy to see that we can span all the positive  ̅ and  ̅ values. Simply look at the 

initial form of (1) and (2) when we set the derivatives equal to zero: 

 

  
 

   
    

 

  
 

   
    

 

We can express these in terms of a and b: 

  
 

 (   )
 

(6) 

  
 

 (   )
 

(7) 

 

In this form, there is no risk of the right hand side of the equation becoming 

negative. Hence, it is easy to see that if we fix j and k, and vary a and b, that we can 

reach any positive  ̅ and  ̅ value. 

 

Restrictions 

 

For  ̅ to be physical, we require that either: 

 

            (    )    

 

OR 

 

            (    )    
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But a(bj+1)<0 is not possible as a, b and j are all positive. 

 

Hence, we must have: 

 

            (    )    

 

The first part of the condition is most important and noting that a, b, j and k are 

all positive, we have the following key condition: 

 

 

 

         

(8) 

 

 

Stability Analysis 

 

To study the system, we use the stability analysis techniques outlined by Strogatz 

(1994, pp. 129-137). 

 

          Let us define: 

 

  

  
  (   )  

 

   
    

 

  

  
  (   )  

 

   
    

 

 

          First, we linearise the system by defining small disturbances (u=x-x* and v=y-

y*), expand du/dt and dv/dt using Taylor Series, and ignore the quadratic terms as they 

are too small. 
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          The key to studying the stability is the Jacobian matrix: 

 

  (
    
    

)
( ̅  ̅)

 

 

 

(

 
  

 

(   ) 

 

(   ) 
  

)

 

( ̅  ̅)

 

 

The determinant (Δ) and trace (τ) of A then allow us to produce a phase 

diagram. A phase diagram is a graph that shows the type of steady state point that we 

have. 

 

 

Figure 2: Strogatz’s (1994, p. 137) diagram for determining the kind of stable points 

we get. 
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Stability analysis: Zero steady state 

 

For the zero steady state, we have: 

  (
  

 

 
 

 
  

) 

 

 ( )     
 

  
 

 

But we have abjk<1 from (8), which means that ab<1/(jk). Hence, det(A)<0. 

 

 ( )       

 

Inspecting Figure 2 shows that the zero steady state is always an unstable saddle 

point. The phase diagram for the zero steady state is trivial as the entire region is an 

unstable saddle point. 

 

We can double check these results by looking at the eigenvectors of A. The 

eigenvectors show the direction in which we approach the steady state for any initial 

condition. 

 

Stability analysis: Non-zero steady state 

 

For the non-zero steady state, we have: 

  

(

 
  

 

(   ̅) 

 

(   ̅) 
  

)
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Substituting the steady points in gives: 

 ( )     
  

(   ̅) (   ̅) 
 

           

   (      ) 

 

But both ab and (1-abjk) are positive due to (8). So the determinant must be 

positive. 

 

As before: 

  

 ( )       

 

Hence, reading off Figure 2, we have either a stable node or a stable spiral. To 

determine whether we have a node or a spiral, we need to look at the discriminant of the 

characteristic equation for A. 

 

      

   (       )         

   (       )         (   )    

 

(               ) 

 

Hence 

        

  
  

 
 

This means we are in the region underneath the parabolic line in Figure 2. 

Hence, we have a stable node. 

 

These results can be confirmed numerically using quiver on MATLAB. The 

following results are produced: 
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Figure 3: Checking the stability of the non-zero steady state. 

 

For the system in Figure 3, we have set the steady state to be at (100, 30). It is 

clear to see that any positive initial condition will gravitate towards this point. Again, 

we can also use eigenvectors to confirm these results. 

 

Note that we are not able to check the stability of the zero steady state in the 

above diagram because we use the formula for the non-zero steady state. 

 

2b. Bone volume fraction equation 

 

Consider (3) again: 

  

  
  ( )  (            )(   ) 

 

The following simplification can be made: 

  

  
  ( )  (      ̅       ̅)(   ) 

(9) 
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This is possible because of the assumption earlier that bone evolves much more 

slowly than cells. Hence, the cells are initially already very close to their steady states. 

Notice that we have a (1-f) term in these equations. This is to account for the fact that 

the cells we are concerned with only live within the pores inside the bone. Graphically, 

this merely flattens the shape of G(f). 

 

The next steps will be to look at what properties we want this equation to have. 

 

Form of G(f) 

 

According to stability theory, if the first time derivative is positive, the system will 

gravitate towards the right and if it is negative, the system will gravitate towards the 

left. Hence, we want a graph that looks something like this: 

 

Figure 4: The form of G(f) we want. For any initial value of f, the system always 

gravitates towards the point f*. 

 

Of course, f* need not be exactly where it is in Figure 4. 
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Geometric factor 

 

We include a geometric or morphological factor to (9) by including a function known as 

the specific surface. Morphological, in this context, refers to the forms and structures 

that we observe in actual living bone tissue. 

 

This function looks at the amount of surface area that is available on bone, 

including both the outside of bone and the surface area in the pores of the bone. Note 

that this function is technically the specific surface of the representative volume 

element, which means it is an average of the surface areas measured at all possible 

positions for the representative volume element. The specific surface is determined by 

calculating the surface area and dividing by the representative volume element. 

 

Using our simplified notation, we can write the specific surface as: 

 

  ( )             
                       

 

Figure 5: The specific surface function as a geometric factor. 
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Starting from the centre of a cross section of bone, we can roughly interpret Figure 5 

as saying: 

 At the centre of the bone, there is no surface area. 

 At a point closer to the edge of the bone, we reach a maximum. 

 The surface area eventually decreases back to zero once we get to the edge of 

the bone. 

 

Mechanical factor 

 

Mechanical factors looks at the average amount of weight placed on a bone. To account 

for the mechanical factor, we simply use the Heaviside step function. 

 

Figure 6: The Heaviside step function as a mechanical factor. 
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Figure 6 reflects what we actually observe in bone in that: 

 If the amount of mechanical load increases, osteoblasts tend to increase in output 

(form more bone) while osteoclasts stay relatively constant in output. 

 If the amount of mechanical load decreases, osteoclasts tend to increase in 

output (resorb more bone) while osteoblasts stay relatively constant in output. 

 

Inclusion of factors into model 

 

We can include the above factors into (9) in the following way. Recall (9) is: 

  

  
  ( )  (      ̅       ̅)(   ) 

Now, we simply set: 

      ̅     (   )(     ( ( 
   ))(    )) 

(10) 

     ̅     (   )(     ( (   
 ))(    )) 

(11) 

 

Recall that we can span the entire space of positive  ̅ and  ̅ values (see (6) and 

(7)), which is why we are allowed to set these to a function that we want. 

 

The dependence on f will eventually go into the parameters j and k from (1) and 

(2). We could also put the dependence on f into COB and COC from the very original 

equations mentioned in the paper. 

 

Beam Theory 

 

We can apply Euler-Bernoulli beam theory to our bone analysis if we consider the bone 

system as a very long beam. In particular, this analysis assumes that we are not close to 

either end of the bone. 
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Figure 7: Initial bone volume fraction profile in the form of a smoothed step function 

(Modified from Buenzli et al. 2013). 

 

Using the Euler-Bernoulli condition, Hooke’s Law and Young’s Modulus, 

Buenzli et al. (2013) indicated an initial bone volume fraction profile (f(r,0)) as in 

Figure 7. From that expression, it is quite easily to determine the strain energy density 

(SED), as it is of the form: 

   (   )  
 

 
     

(12) 

Where 

         (   )  

 

And ε can be determined by solving a set of integral equations suggested in 

Buenzli et al. (2013). 

 

Assuming that f* also takes the form of the initial bone volume fraction profile 

provided by Buenzli et al. (2013), we can first invert SED(r,t) into r(SED,t), and then 

express f*(r) as f*(SED(r,t)). Subsequently, we can used a staggered solution method to 

solve (9) and the integral equation (12) at the same time. 
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Note that (12) does not need to be solved at every time step. For example, it 

could be solved at every fifth time step and then fed back into (9) in order to solve (9). 

 

This is an implementation that we are still attempting to work on at the time this 

paper was written. 

 

3. Ways to extend analysis 

 

There are several ways to extend the work we have done: 

 Considering (1) and (2), it is also possible to set a and b as functions of f, rather 

than j and k. 

 Keep working at simultaneously solving (9) and (12). 

 Apply the equations to bone conditions such as osteoporosis. 
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5. Appendix – Why not a linear form? 

 

If we instead have: 

 

   

  
           

 

   

  
           

 

Here, OB and OC may be scaled as in the previous discussion on this issue. 

 

Setting the two differential equations equal to zero to find the steady states, we 

obtain the following matrix equation: 

 

(
     
     

) (
  
  
)  (
 
 
) 

(A1) 

 

For the non-zero steady state, we want the matrix the two-by-two matrix to be 

non-invertible so that we are not allowed to multiply both sides of the equation by its 

inverse. Otherwise, we would always get the zero steady state: 

 

(
  
  
)  (
     
     

)
  

(
 
 
) 

 

(
  
  
)  (
 
 
) 
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Equivalently, we want the determinant of the two-by-two matrix to be zero. 

Hence: 

 

            

          

 

However, even with this expression, matrix system (A1) is not solvable without 

further information. This means that substituting: 

    
 

   
 

Into the first equation gives: 

   
  

   
   

 

            But this is exactly the same as the second equation (if we divide both sides by 

AOC): 

 

            

  

Hence, we are not closer to solving the equations. 

 

Initial conditions are required in order to solve the matrix system (A1). This is 

undesirable and hence why we do not use this model. We use a non-linear source term 

instead. Notice that, in our model, if we let OC increase, the source term grows slower 

than just the linear source term OC as kOB(fbm) is positive. 
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