

Subject Information Guide

Mathematical Biology: A nonlinear dynamics approach

Semester 2, 2014

Administration and contact details

Host Department	School of Mathematical and Geospatial Sciences
Host Institution	RMIT University
Name of lecturer	Prof. Lewi Stone
Phone number	03 9925 1728
Email Address	Lewi.stone@rmit.edu.au
Homepage	
Name of Honours coordinator	Prof. :Lewi Stone
Phone number	03 9925 1728
Email Address	Lewi.stone@rmit.edu.au

Subject details

Handbook entry URL	
Subject homepage URL	
Honours student hand-out URL	
Start date:	28th July
End date:	8th October
Contact hours per week:	2
Lecture day and time:	Monday 2pm - 4 pm
Description of electronic access arrangements for	NA
students (for example, WebCT)	

Subject content

1. Subject content description

This course is designed for Honours students of both mathematics and statistics, and will attempt to survey exciting concepts in mathematical biology that have arisen over the last few decades. There will be an emphasis on nonlinear dynamical systems approaches with applied

bifurcation theory. While in the past, mathematics has taken the back seat in biological sciences, this view has changed in the extreme in recent years. Mathematical modelling has become one of the more important research tolls in biological research. This course will attempt to provide students with a suitable background for pursuing advanced research in biological modelling. The assessment of this course will involve implementing the techniques encountered in the lectures in a programming environment such as Mat Lab. Students should be comfortable with programming or be prepared to learn how to use Matlab.

2. Week-by-week topic overview

Week 1 Math Biology overview. Deterministic and stochastic models of birth-death processes. Mean time to extinction.

Week 2: Biological models: equilibria, stability, basic bifurcations (saddle node,transcritical); Time delays; Metapopulation models; competitive hierarchies; Matlab brush-up

Week 3&4 Logistic map: stability, dynamics; period doubling route to chaos; lyapunov exponent; Controlling and detecting chaos

Week 5: Guest lecture. MatlabLab

Week 6: Phase oscillators; Biological synchronization.

Week 7-8: 2-Dimensional 2'nd order differential equation systems: Linear systems:
Classification (Focus, Saddle, Node). Nonlinear systems: Phase plane dynamics
Week 9: Applications: Ecological foodwebs; Disease models; Love affairs; When will a large complex system be stable?

Week 10: Limit cycles; Hopf bifurcations.

Week 11: Excitable systems (Hodgkin Huxley, Fitzhugh Nagumo neuron dynamics);Relaxation oscillator (Van der Pol's cardiac oscillator); Genetic circuits;Week 12: Biological networks

Text Books

Strogatz S. Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. Perseus Books (1994) Murray, JD Mathematical Biology. Springer (2000)

3. Assumed prerequisite knowledge and capabilities

Students should be comfortable with basic programming or be prepared to learn to use Matlab.

4. Learning outcomes and objectives

Advanced knowledge of the classical and modern techniques used in the rapidly expanding field of Mathematical Biology.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

	Γ
AQF Program Learning Outcomes addressed in this	Associated AQF Learning Outcome Descriptors for
subject	this subject
Problem Solving - You will have the ability to apply knowledge and skill to characterise, analyse and solve a wide range of problems.	S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas A2: to adapt knowledge and skills in diverse
	contexts

Learning Outcome Descriptors at AQF Level 8		
Knowledge		
K1: coherent and advanced knowledge of the underlying principles and concepts in one or		
more disciplines		
K2: knowledge of research principles and methods		
Skills		
S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and		
provide solutions to complex problem with intellectual independence		
S2: cognitive and technical skills to demonstrate a broad understanding of a body of		
knowledge and theoretical concepts with advanced understanding in some areas		
S3: cognitive skills to exercise critical thinking and judgement in developing new		
understanding		
S4: technical skills to design and use in a research project		
S5: communication skills to present clear and coherent exposition of knowledge and ideas to		
a variety of audiences		
Application of Knowledge and Skills		
A1: with initiative and judgement in professional practice and/or scholarship		
A2: to adapt knowledge and skills in diverse contexts		
A3: with responsibility and accountability for own learning and practice and in collaboration		
with others within broad parameters		
A4: to plan and execute project work and/or a piece of research and scholarship with some		
independence		

5. Learning resources

Insert texts, printed notes and/or software required

6. Assessment

Exam/assignment/classwork breakdown						
Exam	50 %	2 Assignment2	Total 50 %	Class work	0 %	
Assignment	due dates	9th September	7th October	1T	1T	
Approximate exam date			Exam: 24 October (tentative date)			

Institution Honours program details

Weight of subject in total honours assessment at	12.5%
host department	
Thesis/subject split at host department	25% thesis/75% course work
Honours grade ranges at host department:	
H1	80-100 %
H2a	75-79 %
H2b	70-74 %
H3	65-69 %