

Subject Information Guide

Partial Differential Equations in Mathematical Biology AMH5

Semester 1, 2014

Administration and contact details

Host Department	School of Mathematics and Statistics
Host Institution	University of Sydney
Name of lecturer	Dr. Peter Kim
Phone number	02 9351 2970
Email Address	pkim@maths.usyd.edu.au
Homepage	http://www.maths.usyd.edu.au/u/pkim/
Name of Honours coordinator	Dr. Robert Marangell
Phone number	02 9351 5763
Email Address	r.marangell@maths.usyd.edu.au

Subject details

Handbook entry URL	http://www.maths.usyd.edu.au/u/UG/HM/
Subject homepage URL	http://www.maths.usyd.edu.au/u/pkim/CourseWebsites/2013sem1_MathBioHonours/201 4-sem1-mathbiohonours.html
Honours student hand-out URL	http://www.maths.usyd.edu.au/u/UG/HM/
Start date: End date: Contact hours per week: Lecture day	3/03/2014 30/04/2014 3 Monday, Tuesday, Wednesday 9-10am
and time: Description of electronic access arrangement s for students (for	Course website <http: 2013sem1_mathbiohonours="" 20<br="" coursewebsites="" pkim="" u="" www.maths.usyd.edu.au="">14-sem1-mathbiohonours.html></http:>

example,	,
WebCT)	

Subject content

1. Subject content description

The course focuses on partial differential equation (PDE) models in mathematical biology. PDE models capture a wide range of biological phenomena, including spatial and age-structured interactions. Particular topics will include age/maturity-structured models, diffusion and reaction-diffusion models (e.g., predator-prey systems and chemotaxis), and evolution (e.g., genetic drift). We will also discuss a recently developing area of mathematical modelling, that of bridging agent (or individual)-based models and PDEs. This particular topic is relatively new to the field, so the only prerequisite for this investigation is a creative outlook and a curiosity to compare and contrast some newly developed agent-based models with PDE systems. Assessment work will be evenly distributed throughout the semester rather than in the form of one or two big assignments and will include a reading assignment in the current research literature which will be presented as a talk to the class.

2. Week-by-week topic overview

Age-structured models Diffusion and Turing patterns Chemotaxis Fisher's equation Travelling waves/fronts Connecting PDEs to agent-based models

3. Assumed prerequisite knowledge and capabilities

Undergraduate background in differential equations, including ordinary and partial differential equations. No background in biology is required.

4. Learning outcomes and objectives

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in this	Associated AQF Learning Outcome Descriptors for
subject	this subject
Understand a variety of PDE models in	К1
mathematical biology.	
Be able to analyse a range of simple models in	S1, S5
mathematical biology discuss results in class.	
Develop insight for programming discrete, agent-	S3, A2
based models and linking them with continuous	

PDE formulations.	
Be able to critically read and summarise current	S5, K2
research papers in mathematical biology give a	
brief presentation.	

Learning Outcome Descriptors at AQF Level 8	
Knowledge	
K1: coherent and advanced knowledge of the underlying principles and con	cepts in one or
more disciplines	
K2: knowledge of research principles and methods	
Skills	
S1: cognitive skills to review, analyse, consolidate and synthesise knowledge	e to identify and
provide solutions to complex problem with intellectual independence	
S2: cognitive and technical skills to demonstrate a broad understanding of a	a body of
knowledge and theoretical concepts with advanced understanding in some	areas
S3: cognitive skills to exercise critical thinking and judgement in developing	new
understanding	
S4: technical skills to design and use in a research project	
S5: communication skills to present clear and coherent exposition of knowle	edge and ideas to
a variety of audiences	
Application of Knowledge and Skills	
A1: with initiative and judgement in professional practice and/or scholarshi	р
A2: to adapt knowledge and skills in diverse contexts	
A3: with responsibility and accountability for own learning and practice and	l in collaboration
with others within broad parameters	
A4: to plan and execute project work and/or a piece of research and scholar	rship with some
independence	

5. Learning resources

Matlab software will be used to numerically solve PDEs and to simulate simple agent-based models.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	50 %	Assignment	40 %	Class work	10 %
Assignment due dates		Week 4	Week 7	Week 8	Click here to
		(24-26 Mar)	(14-16 Apr)	(28-30 Apr)	enter a date.
		·			
Approximate exam date Week 14 (10-13 June 2014)			3 June 2014)		

Institution Honours program details

Weight of subject in total honours assessment at	10 %	
host department		
Thesis/subject split at host department	40 % thesis, 60% course work (6 courses x 10%)	
Honours grade ranges at host department:		
H1	80-100	
H2a	75-79	
H2b	70-74	
H3	65-69	