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This talk is about going beyond Venn diagrams
for comparing call-no call algorithms

Look at these diagrams. We see disturbing levels of
disagreement, but what can we learn from them?

Caller A Caller B
Caller B

Caller A Caller D A

Caller C 2



Published Venn diagrams on the same topic
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Aim and Synopsis

The purpose of this talk is to introduce you to some of the
challenging statistical problems that arise in the analysis of
cancer genome data, and go beyond Venn diagrams. The
new material is published, and so people wanting more
detail can go to the papers (see end). I'll spend much of my
time setting the scene, and just sample the results.

* Some very basic molecular genetics
 Background to this talk

 The technology, data and algorithms
 Comparing mutation callers

e Combining mutation callers
 References



Nucleotide = unit of DNA = base + sugar + phosphate



Complementarity Base pairs (bp)




aaatatattc
tcgcgagata
aggaaggcaa
aattacagca
cctctggagce
aacatggtgg
aacttatttc
aaatcaagtt
caaggaggca
actgacatr~a

taaaatt« 1 000 bp =1 kilobasepair =1 kbp of DNA

gtttctccca
agggacgtgce
ccaaagtttg
attagcatct
catccttaga
gttgaggatt
atcagtcaag
acatgaaggg
ggcaaccagg

aatatggaga
ctcactaaga
gagaagaacc
gacaagagaa
aaaacaaacg
aataggaatg
gaaaaggtcg
aaaataagga
caggatgtga

rearsbramranm

gtagccggceg
tgggagcaga
attatcgctg
ctcttggaaa
cagaatccaa
agctcatctt
aaagaagaag
tatgaagaat
agattgatcc

gaataaaaga
ccactgtgga
ccgcactcag
taatggacat
atgctggatc
gcccaacaac
aaaggttgaa
ggagagttga
ttatggaagt

brerer~anbanr

gaacaggcag
tgtacactcc
ctagaaacat
tgtgccacag
ctgaggaaca
tcagttttgg
aagtgctaac
tcacaatggt
agttgatagt

actgagagat
ccatatggcc
aatgaagtgg
gattccagag
agaccgagtg
aagtacagtt
acatggtacc
tacaaaccct
tgttttccca

AAAAMMAMTAArt

tgtttatatt
aggaggagaa
agtaagaaga
cacacagatt
agccgtagac
tgggttcact
gggcaacctc
tgggagaaga
aagcgggaga

ctaatgtcgce
ataatcaaaa
atgatggcaa
aggaatgaac
atggtatcac
cattacccta
ttcggecectg
ggccatgcag
aatgaagtgg
aaagaagagc
gaattggtcc
gaagtgttgce
gtgagaaatg
gcagcagtgt
ggaggagtaa
atatgcaagg
ttcaaaagga
caaacactga
gcaacagcta
gacgagcagt
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Chromosome

Chromosomes
are long DNA
molecules (there
are exceptions)

Human
chromosomes:
tens to
hundreds
of millions
of base pairs

av ~150 Mbp
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Background to this talk
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The problem

Single nucleotide substitutions relative to the germline
genome are an important and common feature of
tumor genomes. We’ll call these somatic mutations.

germline = what you are born with
somatic = “of the body”, develops later

There are 3 billion possible locations for a somatic
mutation, and people want to find them in tumors.

(Why? See later.)



Why is mutation-detection hard, I?

Somatic mutations are rare, ~ 1 in a million.
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Somatic mutation frequencies observed in
exomes from 3,083 tumor—normal pairs.
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Why is mutation-detection hard, I?

The tumor tissue whose DNA we sequence is
invariably contaminated with non-tumor cells,
having germline (normal) DNA.
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Normal cells “contaminating” a tumor
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Why is mutation-detection hard, I?

Tumors often have local copy number aberrations,
i.e. regions of the genome with one of both copies
lost, and other regions with gains.
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Why is mutation-detection hard, I?

Somatic mutations are rare, ~ 1 in a million.

The tumor tissue whose DNA we sequence is
invariably contaminated with non-tumor cells,
having germline (normal) DNA.

Tumors often have local copy number aberrations,
i.e. regions of the genome with one of both copies
lost, and other regions with gains.

Tumors are frequently heterogeneous, that is, they
harbor distinct subclones.
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Tumor heterogeneity = subclonality
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Why do we care?

Many large-scale cancer projects are currently scanning for
somatic mutations (and other aberrations) in tumors of

various types, prior to conducting downstream analyses.
These include detecting significantly mutated genes or

pathways, inferring clonal history, and characterizing the
landscape of the somatic mutations.
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Significantly mutated pathways in lung adenocarcinomas
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Cancer genome landscapes

Colorectal Cancer Mx38 Breast Cancer B3C

AVAAAS

L D Wood et al. Science 2007



Why do we care?

Many large-scale cancer projects are currently scanning for
somatic mutations (and other aberrations) in tumors of

various types, prior to conducting downstream analyses.
These include detecting significantly mutated genes or

pathways, inferring clonal history, and characterizing the
landscape of the somatic mutations.
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Why do we care?

’

of the somatic mutations.

Some, but by no means all of these genomic aberrations

will be responsible for the cancer phenotype, and for
metastases. We want to find out which are, for treatment.



The technology, data and algorithms
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Whole exome sequencing

The mutation calling process
starts with what is known as
whole exome sequence data
on matched tumor-normal
genomic DNA. Algorithms
are used to “call” somatic
mutations. They are in the
tumor, and not the normal.
Our starting point is the
algorithms’ output, called
the VCF = variant call format
file, see later.

An lllumina HiSeq 2000 similar
to the one on which the data
we discuss was generated.

Let’s visualize some mapped reads, and variants, but first...
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What is the exome?

This term describes the 1-2% of the genome consisting of
known protein-coding genes (plus a bit on the edges).

It is an abbreviation of expressed genome, but that is
now outdated, as lots more of the genome gets
expressed, not just the protein coding genes.

Nevertheless, the name has stuck. Biologists now know
that much more than protein-coding genes is relevant to
cancer, but these insights are recent.

Partly as a result of this, partly because of cost, most
scanning for somatic mutations is restricted to the
traditional exome.

The genome is “3Gbp, and so the exome is between
30Mbp and 60Mbp. The alternative is deep, whole
genome sequencing, currently much more expensive.
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Variant allele fraction (vaf)

Detecting a variant in an aligned sequence is looking for the
existence of a variant base that is different from the reference
base. In principle, the more reads carrying the variant allele,
the stronger the evidence for it being a true variant. Thus, the
fraction of reads carrying the variant allele (the variant allele
fraction, vaf) is frequently used in variant calling analyses.

For somatic mutation-calling, the tumor and its matched

normal sample are considered together. Therefore, a variant

is determined by the joint status in tumor-normal sequence

pairs:

 somatic: the variant is found in the tumor but not in the
normal

 germline: variant found in both the tumor and the normal

 wildtype: no variant found in either the tumor or the
normal



Why is mutation detection hard, I1?

Finding mutations is challenging, even with high-
throughput sequencing technology.

Coverage of the exome can be highly variable, even
when we have high average coverage.

Artifacts can appear during targeted capture or PCR
amplification, machine sequencing errors occur, as do
incorrect local alighments of reads.

All in all, it’s a hard problem, and so many methods
have been proposed to solve it. How do they compare?



Mutation-calling algorithms

Several are published and more are sure to appear. Here are
the names of some:

Strelka: Saunders et al, Bioinformatics 2012
VarScan2: Koboldt et al, Genome Research 2012
SomaticSniper: Larson et al, Bioinformatics 2012
JointSNVMix: Roth et al, Bioinformatics 2012
Mutect: Cibulskis et al, Nature Biotechnology 2013
EBCall: Shiraishi et al, Nucleic Acids Research 2013

There are also several unpublished in-house algorithms. In
what follows, we’ll use a mix of data from older versions of
published callers, and unpublished ones. None will be named,
as that’s not necessary for what we are doing. Besides, the
current versions of these algorithms will differ from those
leading to the data we discuss, in part because of our results.



What I’'m not and what | am discussing

I’'m not discussing the inner workings of the mutation
detection algorithms, although it will be helpful to know
(where possible) which features of the data they use.

Our aims in this talk are simple:

 totrytogobeyond Venn diagrams, when comparing
callers for which no truth is known, and

e tocombine the results of different callers into a better
caller when some truth is known.

These are statistical analyses which can be carried out
almost independently of the nature of the callers.



Why not just build a caller better
than all of the existing ones?

Every caller will tackle the problem differently, and different callers
are likely to deal more successfully with some issues and less well on

others.

As a consequence, finding a single best performing caller is not easy,
and is perhaps not even feasible.

With multiple callers on hand, anyone conducting a mutation
analysis can apply all of the callers to his/her data with the aim of
later constructing a list of final calls.

In essence, combining calls from multiple callers amounts to
developing a strategy to sort the calls to be included as final calls.
This can be done effectively if one can systematically assign a
confidence measure to being a somatic mutation across the full list.

In general, pursuing this goal requires a validation dataset, at least
to some extent.



Comparing mutation callers
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Lung squamous cell carcinoma (LUSC) dataset

 Mutation calling was done by four callers (named A,
B, C and D) using lllumina exome-seq tumor-normal

pairs from 16 LUSC patients.

 Some additional data exist for the same patients. One
lot is high-coverage Illumina sequencing data available
for tumor-normal pairs on a pre-selected set of 76

genes (540 Kb).

* Itis ~3-fold higher coverage than the original exome-
seq of ~80x, and called deep-sequencing data below.



Counts of the mutations detected by four callers in
the 16 LUSC tumor-normal exome-seq pairs

Caller B

Caller A Caller D
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Mutations detected by each caller or by any
caller (‘Union’), classified based on the number
of callers detecting the mutations.
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Distribution of the coverage (horizontal) and the variant
allele fraction (vertical) in the tumor exome-seqs
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Distribution of mutation quality scores reported in VCF files
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Validation status of individual mutations within
the targeted regions of the deep-sequencing
data (76 genes), among those detected from 16
LUSC whole exome-seq pairs using four callers.
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Scatter plots of tumor vs normal variant allele
fractions, using deep-seq pairs (A), exome-seq pairs
(B) from 39 LUSC patients
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Other results

In the paper, we described several other plots, and
carried out a statistical modelling exercise, fitting a
latent class model to the data, assuming that the
callers gave results that were conditionally
independent, given the true mutation status at a site.

We also made use of RNA-seq data on the expression
levels of genes in these tumors. Such data has more
variable, but frequently very high coverage of genes.



Combining mutation callers
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Coming up

We build a combined caller using the mutation outputs
generated by the 3 callers based on the same paired tumor-
normal sequence data

The most basic information available in each mutation
output is the list of positions detected as point mutations.
The output may also include additional features such as
mutation substitution type, a mutation quality score, and
perhaps details of filters applied to remove artifactual or
low-quality variants.

When the raw sequence data are available, genomic features
can be computed for each mutation site such as sequencing
depth and the variant allele fraction (the fraction of reads
carrying the variant allele) for each tumor and normal
sample.

The more information that is available, the more powerful
are the callers that can be constructed.



The TCGA endometrial cancer data

For 194 tumor-normal lllumina exome-sequence pairs,
somatic-mutation calling was done by three centers. In
total, 51,648 single nucleotide variant mutations were
detected.

A large fraction of the mutations were targeted for
custom capture validation. These sites were captured

using the Nimblegen technology and then re-sequenced
independently using an lllumina HighSeq 2000.

In particular, impartial validation (i.e. validating all calls
from all callers) was carried out for (1) all mutations in
a randomly selected 20 patients and (2) an additional
243 genes of interest from the remaining 174 patients.



Venn diagram of the mutations detected by 3 callers on
20/194 endometrial tumor-normal exome-seq pairs.

Caller A Caller B

AA We have validation

data on all these calls

Caller C
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Counts of mutations across 20 (19) selected patients
classified based on the detection status of the callers

g _ Caller A only
ol Caller B only
m Caller C only
g | Two callers
@ All callers
o
S 11 o o e e [ [ S
ceyozgeoepRenge g
l [ I l | l I l I l
aa‘w"ﬁaaaa‘w’aﬁﬁ’a‘w’aw‘w’a‘w’
O O O O O O O O
O O O O O O O O O O
- 2 - 2 - 2 O D > ) - 2 ) > ) - 2 ) >

51



Taking intersections or unions

Cumulatively adding mutation sets based
on combination call status



Validation results for the seven disjoint mutation
sets (all genes in 20 patients) from the Venn diagram

Combination Val. rate TP count |CumFP |[Cum TP
call status (%) rate rate

All callers 99.4 1,914 55.3
CallerAandConly 96.4 11 294 2.4 63.8
CallerAand Bonly 96,3 7 184 3.1 69.1
CallerBand Conly 94,4 2 34 3.3 70.1
Caller Conly 79.6 11 43 4.4 71.3
Caller A only 59.7 632 935 69.1 98.4

Caller B only 15.9 302 57 100 100



Stacking, including feature-weighted
(logistic) linear stacking

Wolpert DH: Stacked generalization. Neural Networks 1992
Breiman L: Stacked regressions. Machine Learning 1996.
Sill J, Takacs G, Mackey L, Lin D: Feature-weighted linear stacking. arXiv 2009.

Stacking builds a linear (logistic) function of the calls which
predicts the true status of each site as accurately as possible.
Each site is represented by its calls from the different callers,
and a new classifier of mutation sites is learned in this feature
space. Other features can be added when they are available.



Logistic models (fitted by maximum
likelihood) for combining the callers:

Let ¢, = 1 if caller k calls site i as mutant, and ¢, =0
otherwise. (Later we’ll mention continuous scores.)

* (Logistic) linear predictor: 2, [3,c; (similar to the above)
Suppose now that we have genomic features g; on each
site. These can be used to enlarge the feature space. The
linear predictor becomes (adding interactions with calls)
* (Logistic) linear predictor: 3, 2. a;g;c;

We fit this with a sparsity constraint on the as using the

R package glmnet. We then form an ROC curve by
thresholding the fitted probability.
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Genomic features used

For each point mutation site in our final dataset, we know the
validation status (‘somatic’ or ‘non-somatic’), the call status (i.e.,
whether or not it was detected) by each of the three callers, the
mutation substitution type (combination of the reference allele
and the variant allele), and the sequencing depth and the variant
allele fraction in each tumor and normal sample based on the
exome sequence data that was used for mutation-calling.

Caller B provided more information besides the positions of the
detected mutations. For a broader set of somatic variants
(candidate mutations), it reported the mutation quality score as
well as the pass/fail status of individual filters at each site.
Although the detailed description of each filter was not
available, the filter outcomes were available, which we were
able to use for improving Caller B’s performance.



Model fitting
was done using
the point
mutations in
243 genes of
interest from
174 patients
excluding the
20 patients,
and evaluation
was done on
the point
mutations in
the 20 selected
patients.
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ROC curve of an improved Caller B built from a logistic
model using its mutation quality score and filters
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ROC curves with training and test sets reversed
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Comparison of the distribution of four genomic features
between somatic and non-somatic mutations.
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Tumor VAF Normal VAF
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Variant Call Format (VCF)

All four centers agreed on one annotation representing
exome regions and generated calls only within those
regions.

Outputs were provided in a modified Variant Call
Format (VCF), which reports the genomic position,
somatic status, filter status, sequence information from
each tumor and normal sample.

The filter status indicates whether the variant
(candidate mutation) passes all the filters implemented
by each caller or not. The full details of all filters were
not given in the VCF files though, partly because the
modified VCF format was under active development.



