

Subject Information Guide

Advanced Data Analysis

Semester 1, 2015

Administration and contact details

Host Department	School of Mathematics and Applied Statistics	
Host Institution	University of Wollongong	
Name of lecturer	Pavel N. Krivitsky	
Phone number	(2) 4221 3713	
Email Address	pavel@uow.edu.au	
Homepage	http://www.krivitsky.net/teaching/	
Name of Honours coordinator	Rodney Nillsen	
Phone number	02-42213835	
Email Address	nillsen@uow.edu.au	

Subject details

Handbook entry URL	Click here to enter text.	
Subject homepage URL	https://moodle.uowplatform.edu.au/	
Honours student hand-out URL	Click here to enter text.	
Start date:	4 March 2015 (first lecture)	
End date:	3 June 2015 (last lecture)	
Contact hours per week:	2	
Lecture day and time:	Wednesdays, 15:30–17:30	
Description of electronic access arrangements for	Click here to enter text.	
students (for example, WebCT)		

Subject content

1. Subject content description

STAT902 introduces a variety of techniques for advanced data analysis, particularly regression, for handling categorical data, dependent data, nonlinear data, and situations where parts of the model are unknown or misspecified. Generalised linear models are considered in detail, as well as other ways of modelling nonlinearity, such as nonlinear models and nonparametric analysis. A variety of ways to model dependent (e.g., repeated measures) data is considered, particularly, linear mixed models, generalised linear mixed models, generalised estimating equations, and latent variable

models. Frequentist and Bayesian approaches to inference are considered, including likelihood, quasilikelihood, bootstrap, and sandwich estimation, conjugate priors, Monte-Carlo methods and Markov chain Monte-Carlo, as well as some graphical models, numeric integration, and prior elicitation.

2. Week-by-week topic overview

Note that the following schedule is tentative:

Weeks 1–2: Subject overview; revision of matrix algebra and vector calculus, distributions, and maximum likelihood.

Weeks 3–4: Continuation of revision; estimating functions, quasi-likelihood, sandwich estimation, mean-variance misspecification, and bootstrap techniques.

Weeks 4–5: Bayesian inference and computation, prior elicitation, and model selection.

Weeks 6–7: Generalised linear models, and nonlinear least-squares.

Weeks 8–9: Linear models for dependent data: linear mixed models and generalised estimating equations.

Weeks 10–11: Nonlinear models for dependent data: generalised linear mixed models and nonlinear mixed models.

Weeks 12–13: Nonparametric methods.

3. Assumed prerequisite knowledge and capabilities

- Equivalent of University of Wollongong's STAT332/STAT921 and STAT333/STAT922: statistical distribution theory, maximum likelihood estimation, fundamentals of statistical inference, multiple regression (linear), logistic and/or Poisson regressions, basic matrix algebra. These topics will be reviewed early in the subject, but not introduced.
- Familiarity with *R* will be very helpful.

4. Learning outcomes and objectives

1) Analyse complex data, particularly data with dependence, repeated measures, categorical response variables, overdispersion, and nonlinearity; and interpret the analyses.

2) Select and apply sophisticated statistical techniques (mostly regression-related) to answer substantive questions. Techniques include generalised linear models, Bayesian inference, mixed models, quasilikelihood, sandwich estimation, bootstrap, generalised estimating equations, model selection, and nonlinear and nonparametric models.

3) Recognise assumptions and limitations of statistical techniques considered, and diagnose their suitability for the data and the research question.

4) Derive expressions for point estimates, variances, and other quantities of interest for the techniques considered.

5) Implement and perform data analyses and diagnostics using R and BUGS/JAGS, including writing independent code in R language.

5. Learning resources

Text: Jon Wakefield. *Bayesian and Frequentist Regression Methods*. New York : Springer, **2013**. ISBN: 978-1-4419-0924-4 (Print) 978-1-4419-0925-1 (Online). doi:10.1007/978-1-4419-0925-1 Miscellaneous papers: Linked from the Moodle site.

Lecture notes: Posted on the Moodle site.

R examples: Posted on the Moodle site.

R: Freely available at <u>http://www.r-project.org/</u>; graphical frontends are available as well.

6. Assessment

Exam/assignment/classwork breakdown						
Exam	70%	Assignment	30%	Class work	0%	
Assignment	due dates	Weekly, in class	Click here to	Click here to	Click here to	
			enter a date.	enter a date.	enter a date.	
Approximate exam date			Mid June 2015			

Institution Honours program details

Weight of subject in total honours assessment at	Click here to enter text.	
host department		
Thesis/subject split at host department	Click here to enter text.	
Honours grade ranges at host department:		
H1	85-100	
H2a	75-84	
H2b	65-74	
Н3	50-64	