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Stochastic Equations and Processes in Physics and Biology

Exercise sheet 3: Random walk and diffusion equation, the Wiener-Khinchin
theorem, correlation function and power spectral density

• 1. Q1: Inhomogeneous biased random walk. A walker steps a distance ∆ with probabilities p(x)
and q(x) to the right and to the left, respectively every δt seconds. Show that the Fokker-Planck
equation is given by

∂tP (x, t) = −∂x(f(x)P (x, t)) +D∂2
xP (x, t),

with the drift force f(x) = ∆p(x)−q(x)
δt and the diffusion coefficient D = ∆2

2δt .

• 2. Q2: Diffusion equation. A one-dimensional domain is bounded by a wall at x = 0 and has a
sink at x = a. You are releasing random walkers at 0 < x = x0 < a with the rate five walkers every
second. Determine the average number of walkers in the domain in the stationary state. Solve the
problem in the continuous limit, assuming that the random walkers are symmetric and the diffusion
coefficient is D.

• 3. Q3: The Wiener-Khinchin theorem. The power spectral density S(ω) of the process s(t) is
known. Find the corresponding stationary ACF for

(a)
S(ω) = 1

(b)

S(ω) =

{

1 ω ≤ a,
0 otherwise

(c)

S(ω) =

{

1− ω ω ≤ 1,
0 otherwise

• 4. Q4: Power spectral density of a linear system. Compute the power spectral density S(ω)
for the following stochastic processes

(a)
ẋ = −αx+ βx(t− τ) +Dξ(t)

(b) The Van der Pol oscillator:

ẋ = y, ẏ = −x− αy + βy(t− τ) +Dξ(t),

where ξ(t) is the Gaussian white noise with 〈ξ(t)ξ(t′)〉 = δ(t− t′).
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Q1: Solution

The master equation is given by

P (x, t+ δt) = p(x−∆)P (x−∆, t) + q(x+∆)P (x+∆, t)

Using Taylor series expansion

P (x, t+ δt) ≈ p(x, t) + ∂tp(x, t)δt+ . . . ,

p(x−∆)P (x−∆, t) ≈ p(x)P (x, t)− ∂x(p(x)P (x, t))∆ +
∆2

2
∂2
x(p(x)P (x, t)) + . . . ,

q(x+∆)P (x+∆, t) ≈ q(x)P (x, t) + ∂x(q(x)P (x, t))∆ +
∆2

2
∂2
x(q(x)P (x, t)) + . . .

We obtain

∂tP (x, t) ≈
1

δt

[

p(x)P (x, t)− ∂x(p(x)P (x, t))∆ +
∆2

2
∂2
x(p(x)P (x, t))

+ q(x)P (x, t) + ∂x(q(x)P (x, t))∆ +
∆2

2
∂2
x(q(x)P (x, t))− P (x, t)

]

= ∂x

[

−
p(x)− q(x)

δt
P (x, t) +

∆2

2δt
∂xP (x, t)

]

.



Q2: Solution

The entire domain [0, a] is divided into two parts: D1 : [0, x0] and D2 : [x0, a]. In the stationary regime,
the walkers that move to the left from x0 into the domain D1 will eventually return to x0, after bouncing
off the wall at x = 0. This implies that the probability current J1 = −D∂xP1(x) is zero in D1. Therefore,
the stationary density P1(x) in D1 is constant

P1(x) = C1.

In the domain D2 the current J in the stationary regime is constant

J = −D∂xP2(x).

Consequently,

P2(x) = −
J

D
x+ C2,

where the constants C2 can be determined from the boundary conditions. Namely, we require that the
density is continuous at x = x0 and that P2(x = a) = 0 (absorbing boundary). This yields

C1 = −
J

D
x0 + C2, −

J

D
a+ C2 = 0.

Solving for C1 and C2, we obtan

P1 =
J

D
(a− x0), P2 =

J

D
(a− x).

The total number of walkers N in the domain is found as

N =

∫ x0

0

P1(x) dx+

∫ a

x0

P2(x) dx =
J

D

[

(a− x0)x0 + a(a− x0)−
a2

2
+

x2
0

2

]

=
J

2D

[

a2 − x2
0

]

.

The current J gives the number of walkers that pass through the system per unit of time (per one second)

J = 5

(

walkers

second

)

.

Under this condition, the number of walkers in the domain is

N =
5

2D
(a2 − x2

0).



Q3: Solution

(a)

G(τ) =

∫ ∞

−∞

e±iωτ dω = (2π)δ(τ)

(b)

G(τ) = 2Re

(
∫ a

0

e±iωτ dω

)

= 2Re

(

eiωτ

iτ

∣

∣

∣

a

0

)

= 2Re

(

eiaτ − 1

iτ

)

=
2 sin (aτ)

τ
.

Note that Dirac’s delta function can be represented as

lim
a→∞

sin(ax)

πx
= δ(x).

The ACF is shown in Fig. 1 for three different values of a
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Figure 1: ACF from part (b) 2 sin (aτ)
τ for a = 1, 2, 5.



(c)

G(τ) = 2Re

(
∫ 1

0

e±iωτ (1− ω) dω

)

= 2Re

(

1− eiτ + τi

τ2

)

= 2
1− cos τ

τ2
.

The ACF is shown in Fig. 2

-40 -20 0 20 40
x

-0.1

0

0.1

0.2

0.3

0.4

A
C

F(
x)

(1-cos(x))/x
2

Figure 2: ACF from part (c) 1−cos τ
τ2 .



Q4: Solution

(a) In the Fourier space

iωx̂ = −αx̂+ βe−iωτ x̂+Dξ̂

Solving for x̂

x̂ =
Dξ̂

iω + α− βe−iωτ
.

Taking the modulus

Sx(ω) =
1

2π

D2

(α− β cos (ωτ))2 + (ω + β sin (ωτ))2
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Figure 3: Power spectrum S(ω) from part (a) for β = 1, τ = 1 and two different values of α as in the
legend.



(b) Van der Pol oscillator

In the Fourier space
iωx̂ = ŷ, iωŷ = −x̂− αŷ + e−iωτβŷ +Dξ̂.

Solving for x̂ and ŷ

x̂ =
Dξ̂

1− ω2 + iωα− iβωe(−iωτ)

ŷ = iωx̂.

The power spectrum of the x coordinate

Sx(ω) =
1

2π

D2

(1− ω2 − βω sinωτ)2 + ω2(α− β cosωτ)2
.
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Figure 4: Power spectrum Sx(ω) for τ = 0 (solid line), τ = 100 (dotted line) and the background spectrum
S1(ω) (dashed line). Other parameters are β = 0.5 α = −1.

The background function S1(ω) can be determined as the limit of the running average of Sx(ω) over 2π/τ

S1(ω) = lim
τ→∞

τ

2π

∫ ω+2π/τ

ω

Sx(ω
′) dω′.

This yields

S1(ω) =
D2

[ω2 − 1]2 + ω2[(α+ β)2 + 2(α+ β)β]
.
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Figure 5: ACF of x in the units of D2 at different values of the delay time τ : (a) and (b) τ = 10, (c) and
(d) τ = 100, (e) and (f) τ = 300. Panels (a), (c) and (e) show the behaviour of the ACF on the scale of
t = 25τ . Panels (b), (d) and (f) reveal the behaviour on the scale of t = 2τ .


