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Lecture 1

Probability: basic concepts and definitions
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Discrete case

X . . . a discrete random variable
P (X) . . . probability distribution function

P (Xi) = lim
n→∞

1

n
#{X = Xi}, P (Xi) ∈ [0, 1]

with
#{X = Xi} . . . number of outcomes with X = Xi.
Normalization condition

∑

Xi∈Ω

P (Xi) = 1,

Ω . . . set of all possible values of X
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Continuous case

X . . . continuous random variable from X ∈ [a, b]
x . . . specific value of X
ρ(x) . . . probability density function (pdf)

ρ(x) = lim
n→∞, dx→0

#{X ∈ [x, x+ dx]}
ndx

.

Probability to find X in a narrow interval [x, x+ δx]

Pr(X ∈ [x, x+ δx]) = ρ(x) δx.

Normalization condition

∫ b

a
ρ(x) dx = 1.
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cumulative distribution function (cdf): F (x)

F (x) = Pr(X ≤ x) =

∫ x

−∞

ρ(x) dx.

This shows that

ρ(x) =
dF (x)

dx
.

Note that F (x) and ρ(x) are defined on the whole line x ∈ (−∞,+∞).

If x ∈ [a, b]

ρ(x) = 0, x /∈ [a, b]

F (x) is monotonically increasing with

F (−∞) = 0, and F (+∞) = 1
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Uniform distribution

X ∼ uniformly distributed on [0, 1]

pdf : ρ(x) =

{

1, x ∈ [0, 1]
0, x /∈ [0, 1]

cdf : F (x) =







0, x ≤ 0
x, x ∈ [0, 1]
1, x ≥ 1
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Expected value (average or mean)

In theory for a discrete rv X

E(X) = 〈X〉 =
∑

Xi∈Ω

P (Xi)Xi

In theory for a continuous rv X

E(X) = 〈X〉 =
∫ +∞

−∞

xρ(x) dx

For any given function Y = f(X)

E(Y ) = 〈Y 〉 =
∑

Xi∈Ω

f(Xi)P (Xi) ⇒ discrete,

E(Y ) = 〈Y 〉 =

∫ +∞

−∞

f(x)ρ(x) dx ⇒ continuous
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Expected value in an experiment

In a random experiment with n tries

〈X〉 = 1

n

n
∑

i=1

Xi

Unbiased estimator for the mean
Xi . . . independent and identically distributed (iid) rvs with

E(Xi) = µ

Show that

E

(

1

n

n
∑

i=1

Xi

)

= µ

E

(

1

n

n
∑

i=1

Xi

)

=
1

n

n
∑

i=1

E(Xi) =
n

n
µ = µ
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Variance and standard deviation

In theory for a discrete rv X

Var(X) =
∑

Xi∈Ω

P (Xi)(Xi − E(X))2

In theory for a continuous rv X

Var(X) =

∫ +∞

−∞

(x− E(X))2ρ(x) dx =

∫ +∞

−∞

x2ρ(x) dx− (〈X〉)2

Standard deviation σ

σ =
√

Var(X)
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Proof of Var(X) = E(X2)− E(X)2

Var(X)

=

∫ +∞

−∞

(x− E(X))2ρ(x) dx

=

∫ +∞

−∞

[x2 + E(X)2 − 2xE(X)]ρ(x) dx

=

∫ +∞

−∞

x2ρ(x) dx+ E(X)2
∫ +∞

−∞

ρ(x) dx− 2E(X)

∫ +∞

−∞

x ρ(x) dx

=

∫ +∞

−∞

x2ρ(x) dx+ E(X)2 − 2E(X)2 = E(X2)− E(X)2

Relation between E(X) and E(X2):

〈X2〉 ≥ 〈X〉2
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Expected value (average or mean)

For a uniform distribution

E(X) =

∫ 1

0

x dx =
1

2

Var(X) =

∫ 1

0

x2 dx− (E(X))2 =
1

3
− 1

4
=

1

12

standard deviation = σ =
√

Var(X) =
1√
12

E(sin(X)) =

∫ 1

0

sin(x) dx = − cos(x)
∣

∣

∣

1

0
= 1− cos (1)
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Variance and standard deviation in an experiment

In a random experiment with n tries

Var(X) =
1

n− 1

n
∑

i=1

(Xi − 〈X〉)2, with 〈X〉 = 1

n

n
∑

i=1

Xi

Example

Let Xi be iid with E(Xi) = µ and Var(X) = σ2. Show that

1

n− 1

n
∑

i=1

(Xi − 〈X〉)2

is an unbiased estimator for σ2.

For this, show that

E

(

1

n− 1

n
∑

i=1

(Xi − 〈X〉)2
)

= σ2
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Normal distribution

The normal rv X is a continuous rv with pdf

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (−∞ < x < ∞)

X ∼ N(µ, σ2), E(X) = µ, Var(X) = σ2

Basic integrals to solve

∫

∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx = 1

∫

∞

−∞

x√
2πσ2

e−
(x−µ)2

2σ2 dx = µ

∫

∞

−∞

x2√
2πσ2

e−
(x−µ)2

2σ2 dx = σ2 + µ2
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Normal distribution

Graph of the pdf f(x) and the cdf F (x) for a normal rv X ∼ N(1, 1).
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Z-score and standard normal distribution

X ∼ N(µ, σ2)

then

Z =
X − µ

σ

follows the standard normal distribution, i.e. Z ∼ N(0, 1)

pdf(z) = f(z) =
1√
2π

e−
z2

2 , (−∞ < z < ∞)

cdf: F (z)

F (z) =

∫ z

−∞

pdf(z) dz =
1

2

(

erf(z/
√
2) + 1

)

Error function erf(z) = 2/
√
π
∫ z
0
e−x2

dx is tabulated
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Change of variables (continuous case): Given a pdf
for X, what is the pdf for Y = f(X) ?

ρ(x) . . . pdf of X on x ∈ [a, b]
Y = f(X) . . . one-to-one function on [a, b]
p(y) . . . pdf of Y on y ∈ [f(a), f(b)] to be found

X=a X=bX

Y

y

y+∆y

x x+∆x

Y=f(X)
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Change of variables (continuous case)

Probability for Y to be in [y, y +∆y]

Pr(Y ∈ [y, y +∆y]) = p(y)∆y

Probability for X to be in [x, x+∆x]

Pr(X ∈ [x, x+∆x]) = ρ(x)∆x

These probabilities are identical

p(y)∆y = ρ(x)∆x,⇒ p(y) = ρ(x)
∆x

∆y

p(y) = ρ(x)
1

(∆y/∆x)
= ρ(x)

1

f ′(x)

Using x = f−1(y), we find

p(y) = ρ(f−1(y))
1

f ′(f−1(y))
.
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Change of variables: example

Example

Generate random numbers y ≥ 0, with a given pdf p(y), using a uniformly
distributed random numbers x from x ∈ [0, 1].
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Change of variables: solution

Looking for y = f(x) such that

p(y) =
ρ(x)

f ′(x)
=

1

f ′(x)
, with ρ(x) = 1

with f ′(x) = dy/dx, we find

p(y) dy = dx

integrating
∫ y

0

p(y) dy =

∫ x

0

dx = x,

Recalling the definition of the cdf G(y) of y

G(y) =

∫ y

−∞

p(y) dy =

∫ y

0

p(y) dy
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solution: continued

Transformation formulae

x = G(y) ⇒ y = G−1(x)

0

y
0

0.2

0.4

0.6

0.8

1
x

x is mapped to y via the inverse cdf

x
0

y
0

For exponential distribution: p(y) = α exp (−αy), y ≥ 0

G(y) =

∫ y

0

α exp (−αy) dy = 1− exp (−αy)

inverting the cdf
y = −α−1 ln (1− x)
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Generating a Gaussian rv

cdf of Z ∼ N(0, 1)

G(z) = (1/2)
(

erf(z/
√
2) + 1

)

= X, X uniform on [0, 1]

Solving for z
z =

√
2 erf−1(2X − 1)

Inverse error function method

Computationally slow, as one needs to evaluate erf−1(. . . )

Box-Muller algorithm

Let U1 and U2 are independent and uniform on (0, 1). Then

Z1 =
√

−2 lnU1 cos (2πU2), and Z2 =
√

−2 lnU1 sin (2πU2)

are independent with standard normal distribution (Z1, Z2) ∼ N(0, 1).
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Probability and events

mutually disjoint events A and B are such that

A ∩B = ∅,

where ∅ denotes an empty set.
If Ai, i = 1, 2, 3, 4, . . . are mutually disjoint, then

P (A1 ∪A2 ∪A3 ∪ . . . ) = P (A1) + P (A2) + P (A3) + . . .

For any A and B, we have

P (A∪B) = P (A)+P (B)−P (A∩B)
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Probability and events

Conditional probability Pr(A|B) is defined for any two events A and B as
the probability of the event A given that the event B has certainly
occurred.

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

Example: roll of a die

a)

A = {1, 2, 3}, B = {1, 2, 5, 6}, P (A|B) =
P ({1, 2})

P ({1, 2, 5, 6}) =
2/6

4/6
= 0.5

b)

A = {1, 2}, B = {5, 6, 4, 3}, P (A|B) =
P (∅)

P ({5, 6, 4, 3}) = 0
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Probability

Example

Your neighbor has two children. You know that the name of one of them
is John. What is the probability that your neighbor has two boys?

Solution: construct a table with all possible outcomes

Event first child second child probability

(b, b) boy boy 1/4
(b, g) boy girl 1/4
(g, b) girl boy 1/4
(g, g) girl girl 1/4

Denote A = (two boys) = P (b, b) and
B = (one is a boy) = P ({(b, b), (b, g), (g, b)}).
Then A ∩B = A. Consequently

P (A|B) =
P (A ∩B)

P (B)
=

P (A)

P (B)
=

1/4

3/4
=

1

3
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Independent events

Joint distribution

Any two events A and B are independent if the joint distribution can
be factorized

P (A ∩B) = P (A)P (B)

As a consequence

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A).

and

P (B|A) = P (B ∩A)

P (A)
=

P (A)P (B)

P (A)
= P (B).
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Sum of two normal rv Y = X1 +X2

Example

Let X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2) find Y ∼ N(E(Y ) =?,Var(Y ) =?)

E(Y ) = E (X1 +X2) = E(X1) + E(X2) = µ1 + µ2

Var(Y ) = E((X1 +X2)
2)− (µ1 + µ2)

2

= E(X2
1 +X2

2 + 2X1X2)− (µ1 + µ2)
2

= E(X2
1 ) + E(X2

2 ) + 2E(X1X2)− (µ1 + µ2)
2

= σ2
1 + µ2

1 + σ2
2 + µ2

2 + 2µ1µ2 − (µ2
1 + µ2

2 + 2µ1µ2)

= σ2
1 + σ2

2

Only works if X1 and X2 are independent

E(X1X2) = E(X1)E(X2)
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Ideal gas of active particles

Example

A particle moves with a constant absolute velocity V in a direction that
changes randomly in time. For a gas of such active particles with a given
concentration ρ0, the distribution of the direction of motion is uniform.

Find the pressure in the gas

Determine the distribution of the relative velocity U = |u1 − u2|

1D case:
ux = ±V

x

Pr(u
x
=-V)=1/2 Pr(u

x
=V)=1/2
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Ideal gas of active particles: 1D

Number of hits dN per unit area in time dt

dN =
1

2
ρ0V dt

Pressure P

P =
m∆V

dt
dN =

α

2
mρ0V

2, α =

{

2 elastic
1 inelastic

Distribution of the relative velocity U = |u1 − u2|

Pr(U = 0) =
1

2
, Pr(U = 2V ) =

1

2
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Ideal gas of active particles: 2D

V

u
x

u
y

φ
V

wall

S

u
x
dt

Number of hits dN per unit area in time dt

dN = ρ0dt

∫ V

0

f(ux)ux dux, f(ux) . . . pdf of ux

Associated problem:

Find the distribution of the projection of the velocity onto any given
direction
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Ideal gas of active particles: 2D

Projection onto x axis
ux = V cosφ

Distribution of the angle φ is uniform on [0, 2π]

pdf(φ) =
1

2π

Changing variables: φ ⇒ ux

Note that the mapping ux = V cosφ is not one-to-one!
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Ideal gas of active particles: 2D

pdf of ux

f(ux) dux = −2
1

2π
dφ ⇒ f(ux) =

1

π

∣

∣

∣

1

dux/dφ

∣

∣

∣

Using

ux = V cosφ,
dux
dφ

= −V sinφ = −V
√

1− cos2 φ

we obtain

f(ux) =
1

πV
√

1− cos2 φ
=

1

π
√

V 2 − u2x
.

Number of hits per unit area in time dt

dN

dt
= ρ0

∫ V

0

uxdux

π
√

V 2 − u2x
= ρ0

V

π
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Ideal gas of active particles: 2D

Pressure

P = ρ0

∫ V

0

dux
2mu2x

π
√

V 2 − u2x
=

ρ0mV 2

2
=

ρvV
2

2
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Ideal gas of active particles: 2D

Relative velocity
U = |u1 − u2|

Associated problem:

Distribution of the distance between two random points on a circle
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Ideal gas of active particles: 2D

Distribution of Ψ = φ2 − φ1

Because φ1 and φ2 are independent, we can fix one angle at an arbitrary
value, e.g. φ1-fixed, and look at the distribution of φ2.

Because φ1 and φ2 are uniform on [0, 2π]

Ψ = φ2 − φ1 is also uniform on [0, 2π]
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Ideal gas of active particles: 2D

cdf(∆) = Pr(0 ≤ Ψ = φ2 − φ1 ≤ ∆)

=

∫ 2π

0

dφ1 Pr(φ2 ∈ [φ1, φ1 +∆]|φ1)× pdf(φ1)

=

∫ 2π

0

dφ1 Pr(φ2 ∈ [φ1, φ1 +∆])× pdf(φ1)

=

∫ 2π

0

dφ1 [cdf(φ1 +∆)− cdf(φ1)]× pdf(φ1)

=

∫ 2π

0

dφ1

[

φ1 +∆

2π
− φ1

2π

]

× 1

2π
=

∆

2π

Ψ is uniform on [0, 2π]

cdf(Ψ) =
Ψ

2π
⇒ pdf(Ψ) =

1

2π
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Ideal gas of active particles: 2D

periodicity of angles

φ2 − φ1 is uniform only for periodic boundary conditions.

Convolution of probability distributions

If x and y are not periodic and independent on [0, a], then z = x− y and
s = x+ y are distributed according to:

f(z) =

∫ a

0

pdf(x)pdf(z + x) dx

f(s) =

∫ a

0

pdf(x)pdf(s− x) dx
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Sum of independent random variables

Sum (difference) of two uniform rvs (x, y ∈ [0, 1])

-1 -0.5 0 0.5 1 1.5 2
z,s

0

0.5

1
f(

z)
, f

(s
)

f(z=x-y)
f(s=x+y)

f(z) =

{

z + 1, z ∈ [−1, 0]
1− z, z ∈ [0, 1]

f(s) =

{

z, z ∈ [0, 1]
2− z, z ∈ [1, 2]
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Sum of two normal rvs

Example

Using the convolution formulae, show that the sum of two independent
normal variables X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) is normally

distributed with E(X1 +X2) = µ1 + µ2 and Var(X1 +X2) = σ2
1 + σ2

2.
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Ideal gas of active particles: 2D

Distribution of U = 2V sin (Ψ/2), with Ψ uniform on [0, 2π].

U = 2V sin (Ψ/2) is not a one-to-one function on [0, 2π]

0 1 2 3 4 5 6
Ψ

0

0.5

1

U
=

2V
si

n(
Ψ

/2
)

∆U

∆Ψ ∆Ψ
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Ideal gas of active particles: 2D

pdf(U)∆U = 2
1

2π
∆Ψ ⇒ pdf(U) =

1

π

∣

∣

∣

1

dU/dΨ

∣

∣

∣

pdf(U) =
1

π

1

V cos (Ψ/2)
=

1

πV
√

1− sin2 (Ψ/2)

pdf(U) =
2

π
√

(2V )2 − U2

Average relative velocity

〈U〉 =
∫ 2V

0

2U dU

π
√

(2V )2 − U2
=

4V

π
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Exercises

Determine the pressure in the ideal gas of active particles in 3D

Determine the relative velocity of the active particles in 3D

Derive the equation of state of an ideal gas, with the Maxwell
distribution of the velocities

p(v) =
( m

2πkT

)3/2
exp

(

−mv
2

2kT

)
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