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Lecture 2:

Stochastic Processes
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Stochastic Process

Definition

Any stochastic process is a probabilistic time series x(t), where x(t) is a
time-dependent random variable

Coordinate of a Brownian particle vs time
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Stochastic Process

Electrocardiogram (ECG)
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Continuous stochastic process x(t)
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Choose a series of points on the time line

(t1 > t2 > t3 . . . ) with (x1 = x(t1), x2 = x(t2), x3 = x(t3) . . . )

x(t) is completely described by the joint distribution

p(x1, t1;x2, t2;x3, t3; . . . )
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Ensemble of realizations

Role of initial conditions

For identical initial conditions x(t = 0) = x0, each realization (trajectory)
of x(t) is different!
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Ensemble average

Averaging (integrating) over x

p(x1, t1) =

∫

Ω
dx2 p(x1, t1;x2, t2),

where Ω is the space of all possible values of x.
For t1 > t2 we define transitional probability to go from (2) to (1)

p(x1, t1|x2, t2) =
p(x1, t1;x2, t2)

p(x2, t2)

Time-dependent ensemble mean

〈x(t)|x0, t0〉 =

∫

dxx p(x, t|x0, t0).
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Autocorrelation function (ACF)

Definition

For process x(t), defined on (−∞,∞), we introduce the
autocorrelation function

G(τ) = lim
T→∞

1

T

∫ T

0
dtx(t)x(t+ τ),

ACF is an even function

G(−τ) = G(τ)
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Autocorrelation function (ACF)

Proof of G(−τ) = G(τ)

G(−τ) = lim
T→∞

1

T

∫ T

0
dtx(t)x(t− τ) =

{

t− τ = y
∣

∣

T−τ

−τ
, dt = dy

}

= lim
T→∞

1

T

∫ T−τ

−τ

dyx(τ + y)x(y)

= lim
T→∞

1

T

[
∫ 0

−τ

(. . . ) +

∫ T

0
(. . . )−

∫ T

T−τ

(. . . )

]

= G(τ)

The last equality holds in the limit T → ∞
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ACF and the ensemble average

Non-stationary ACF

The conditional (non-stationary) ACF is determined as

〈x(t)x(t′)|x0, t0〉 =

∫

dx dx′ xx′p(x, t;x′, t′|x0, t0)

Average over time vs ensemble average

For a general process x(t)

〈x(t)x(t′)|x0, t0〉 6= lim
T→∞

1

T

∫ T

0
dtx(t)x(t+ τ).
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Markov processes

Absence of memory

For any t1 > t2 > t3, the probability at time t1 only conditionally depends
on the state at time t3, i.e.

p(x1, t1|x2, t2;x3, t3) = p(x1, t1|x3, t3).

Consequence

p(x1, t1;x2, t2|x3, t3) = p(x1, t1|x2, t2)p(x2, t2|x3, t3).
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Proof

Using the Markov property

p(x1, t1|x2, t2)p(x2, t2|x3, t3) = p(x1, t1|x2, t2;x3, t3)p(x2, t2|x3, t3)

=
p(x1, t1;x2, t2;x3, t3)

p(x2, t2;x3, t3)

p(x2, t2;x3, t3)

p(x3, t3)

=
p(x1, t1;x2, t2;x3, t3)

p(x3, t3)

= p(x1, t1;x2, t2|x3, t3).
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The Chapman-Kolmogorov equation

Consider all possible ways to go from (3) to (1) over (2)

p(x1, t1|x3, t3) =

∫

Ω
dx2 p(x1, t1;x2, t2|x3, t3)

=

∫

Ω
dx2

p(x1, t1;x2, t2;x3, t3)

p(x3, t3)

For Markovian process x(t)
∫

Ω
dx2

p(x1, t1;x2, t2;x3, t3)

p(x3, t3)
=

∫

Ω
dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3)

Chapman-Kolmogorov equation

p(x1, t1|x3, t3) =

∫

Ω
dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3)
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Stationary processes

Definition

Process x(t) is called stationary if for any ǫ > 0, x(t+ ǫ) has the same
statistics as x(t). Stationary process corresponds to a remote past:

t0 → −∞.

Properties of a stationary process

lim
t0→−∞

p(x, t|x0, t0) = ps(x)

〈x(t)|x0, t0〉 =

∫

x p(x, t|x0, t0) dx =

∫

xps(x) dx

= constant

〈x(t)x(t′)|x0, t0〉 = f(t− t′).
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ACF of a stationary processes

In the limit t0 → −∞

ACF(t, t′)s = lim
t0→−∞

〈x(t)x(t′)|x0, t0〉

= lim
t0→−∞

∫

xx′dx dx′ p(x, t;x′, t′|x0, t0)

= lim
t0→−∞

∫

xx′dx dx′ p(x, t|x′, t′)p(x′, t′|x0, t0)

=

∫

xx′dx dx′ p(x, t|x′, t′)ps(x
′)

=

∫

x′dx′ 〈x(t)|x′, t′〉ps(x
′)
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Ergodic processes

Definition

For an ergodic process x(t), the averaging over time is equivalent to the
averaging over the ensemble.

Ergodicity vs Stationarity

Note that ergodicity is stronger than stationarity

Example:

x(t) = A, A is uniformly distributed in [0; 1]

Any realization is a straight line x(t) = Ai

Ai are different for different realizations so that 〈x(t)〉 = 0.5
Average over time for a single realization

∫

dt x(t) = Ai
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Random telegraph process

Kramers theory of chemical reactions: (H. A. Kramers, 1940)
Two reacting chemicals: X1 and X2

X1 ⇋ X2

Associated bistable system x(t) = (a, b) with transition probabilities
(reaction rates):

λ = lim
∆t→0

1

∆t
P (x = b, t+∆t|x = a, t)

µ = lim
∆t→0

1

∆t
P (x = a, t+∆t|x = b, t)
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Random telegraph process

Schematic representation and bistable systems

0 time
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x

U
(x

)
Other applications:

in physics: spin systems and magnetism

in finance: stoch market prices

in biology: bistable neurons
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Random telegraph process

Master equation (Chapman-Kolmogorov)

∂tP (a, t|x, t0) = −λP (a, t|x, t0) + µP (b, t|x, t0)

∂tP (b, t|x, t0) = λP (a, t|x, t0)− µP (b, t|x, t0)

Conservation of probability at all times

∂t(P (a, t|x, t0) + P (b, t|x, t0)) = 0 ⇒ P (a, t|x, t0) + P (b, t|x, t0) = 1

Initial conditions

P (x′, t0|x0, t0) = δx′,x0
=

{

0, x′ 6= x0,

1, x′ = x0
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Random telegraph process

Characteristic eigenvalues γ

∣

∣

∣

−λ− γ µ

λ −µ− γ

∣

∣

∣
= 0

γ2 + γ(λ+ µ) = 0

γ1 = 0, γ2 = −(λ+ µ)

Corresponding eigenvectors

v(γ=0) =

(

C1,
λ

µ
C1

)

, v(γ=−(λ+µ)) = (C2,−C2) ,

General solution

P (a, t|x0, t0) = C1 + C2e
−(λ+µ)t,

P (b, t|x0, t0) =
λ

µ
C1 − C2e

−(λ+µ)t
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Random telegraph process

Solution in the compact form

P (a, t|x0, t0) =
µ

λ+ µ
+ e−(λ+µ)(t−t0)

(

λ

λ+ µ
δa,x0

−
µ

λ+ µ
δb,x0

)

,

P (b, t|x0, t0) =
λ

λ+ µ
− e−(λ+µ)(t−t0)

(

λ

λ+ µ
δa,x0

−
µ

λ+ µ
δb,x0

)

Stationary distribution: t0 → −∞

Ps(a) =
µ

λ+ µ
, Ps(b) =

λ

λ+ µ
.

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics and biology AMSI 2017 21 / 34



Random telegraph process

Time-dependent ensemble average

〈x(t)|x0, t0〉 = aP (a, t|x0, t0) + b P (b, t|x0, t0)

=
aµ+ bλ

µ+ λ
+ exp [−(λ+ µ)(t− t0)]

(a− b)(λδa,x0
− µδb,x0

)

µ+ λ

Note that
(

x0 −
aµ+ bλ

µ+ λ

)

=
(a− b)(λδa,x0

− µδb,x0
)

µ+ λ

Final result

〈x(t)|x0, t0〉 =
aµ+ bλ

µ+ λ
+ exp [−(λ+ µ)(t− t0)]

(

x0 −
aµ+ bλ

µ+ λ

)
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Random telegraph process

Stationary average xs

xs = lim
t0→−∞

〈x(t)|x0, t0〉 =
aµ+ bλ

µ+ λ
.

Stationary variance Var(x)s = 〈x2〉s − x2s

Var(x)s =
a2µ

λ+ µ
+

b2λ

λ+ µ
−

(aµ+ bλ)2

(λ+ µ)2

=
a2µ(λ+ µ) + b2λ(λ+ µ)− (a2µ2 + b2λ2 − 2abµλ)

(λ+ µ)2

=
(a− b)2µλ

(λ+ µ)2
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Random telegraph process

Stationary ACF

ACF(t, t′)s =
∑

(x,x′=a,b)

xx′P (x, t|x′, t′)Ps(x
′)

=
∑

(x′=a,b)

x′Ps(x
′)

∑

(x=a,b)

xP (x, t|x′, t′)

=
∑

(x′=a,b)

x′〈x(t)|x′, t′〉Ps(x
′)

= a〈x(t)|a, t′〉Ps(a) + b〈x(t)|b, t′〉Ps(b)

=

(

aµ+ bλ

µ+ λ

)2

+
(a− b)2µλ

(µ+ λ)2
exp [−(λ+ µ)(t− t′)]

= x2s +Var(x)s exp [−(λ+ µ)(t− t′)]
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Random telegraph process

Process centered about mean value x(t)− xs

〈x(t)− xs|x0, t0〉 = exp [−(λ+ µ)(t− t0)] (x0 − xs)
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Random telegraph process

Stationary ACF of the centered process

G(t, t′) = 〈(x(t)− xs)(x(t
′)− xs)|x0, t0〉

=

∫

dx dx′(x− xs)(x
′ − xs)p(x, t;x

′, t′|x0, t0)

=

∫

dx dx′(xx′ − xsx− xsx
′ + x2s)p(x, t;x

′, t′|x0, t0)

= 〈x(t)x(t′)|x0, t0〉

− xs

∫

dx dx′ x′p(x, t;x′, t′|x0, t0)

− xs

∫

dx dx′ xp(x, t;x′, t′|x0, t0)

+ x2s
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Random telegraph process

Note that

∫

dx dx′ x′p(x, t;x′, t′|x0, t0) =

∫

dx′ x′p(x′, t′|x0, t0)

= 〈x(t′)|x0, t0〉
∫

dx dx′ xp(x, t;x′, t′|x0, t0) =

∫

dxxp(x, t|x0, t0)

= 〈x(t)|x0, t0〉

in the limit t0 → −∞

〈x(t)|x0, t0〉 = 〈x(t′)|x0, t0〉 = xs
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Random telegraph process

Stationary ACF of the centered process

G(t, t′) = ACF(t, t′)s − 〈x〉2s

= Var(x)s exp [−(λ+ µ)(t− t′)]
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Random telegraph process

Survival probability

Given that at time t = t0 the system was in state x = a, what is the
probability P (a, t|a, t0) for the system to stay in the same state at time
t > t0?

∂tP (a, t|a, t0) = −λP (a, t|a, t0), P (a, t = t0|a, t0) = 1

∂tP (b, t|b, t0) = −µP (b, t|b, t0), P (b, t = t0|b, t0) = 1

Survival probabilities for a random telegraph process

P (a, t|a, t0) = e−λ(t−t0), P (b, t|b, t0) = e−µ(t−t0).

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics and biology AMSI 2017 29 / 34



Residence times

ta . . . time spent in state a

tb . . . time spent in state b

cdf of the residence times

cdfa(t) = Pr(ta ≤ t) = 1− Pr(ta ≥ t) = 1− P (a, t|a, t0) = 1− e−λ(t−t0)

cdfb(t) = Pr(tb ≤ t) = 1− Pr(tb ≥ t) = 1− P (b, t|b, t0) = 1− e−µ(t−t0)

pdf and the average residence times

pdfa(t) = cdfa(t)
′ = λe−λ(t−t0), 〈ta〉 = λ−1

pdfb(t) = cdfb(t)
′ = µe−µ(t−t0), 〈tb〉 = µ−1
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Relation of the random telegraph process to the
Poisson distribution

Exponential vs Poisson

If the distribution of the residence times is exponential with the parameter
λ, then that distribution of the number of switches N in any interval τ
follows the Poisson distribution

P (N = k) =
(τλ)k

k!
e−τλ.

Expected value and variance

E(N) = τλ, Var(N) = τλ
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Examples of the Poisson distribution

Radioactivity (number of decays in a given time interval)

Retail markets (number of customers arriving at a shop in a given
time interval, or the number of purchases per day, per hour or per
minute)

Telecommunication (number of telephone calls arriving per given time
interval)
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Renewal process

Sequence of random variables si with identical distribution

(s1, s2, s3, . . . )

General theory

David R. Cox Renewal Theory

Igor Goychuk and Peter Hänggi, Theory of non-Markovian stochastic

resonance, Phys Rev. E 69, 021104 (2004)
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Firing neuron as a renewal process
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Excitable (FitzHugh−Nagumo) system

Representing excitable system as a two−state system

Noisy bistable system with a single delay

=
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