Stochastic Equations and Processes in physics and biology

Andrey Pototsky

Swinburne University

AMSI 2017

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics

AMSI 2017 1 / 40

Examples of stochastic processes

A walker moves along a line and makes one step at a time of a fixed length Δ either to the left or to the right with equal probability of 1/2. The time intervals between two subsequent steps is δt . **Transitional probability** p(x, t + 1|y, t)

$$p(x,t+\delta t|y,t) = \begin{cases} \frac{1}{2}, & \text{if } |x-y| = \Delta\\ 0, & \text{otherwise} \end{cases}$$

For simplicity assume

$$\Delta = \pm 1, \quad \delta t = 1, \quad x_0 = 0, \quad t_0 = 0$$

Master equation

$$p(i, t+1|0, 0) = \frac{1}{2}(p(i-1, t|0, 0) + p(i+1, t|0, 0)).$$

Randon Walk in ID

Pascal's triangle

-1

Binomial coefficients

$$C_n^k = \frac{n!}{k!(n-k)!} = \binom{k}{n}$$

AMSI 2017 5 / 40

General solution

$$p(i,t|0,0) = \left(\frac{1}{2}\right)^t C_t^{(i+t)/2},$$

with

$$C_n^k = \begin{cases} \frac{n!}{k!(n-k)!}, & \text{integer } n \ge k\\ 0, & \text{otherwise} \end{cases}$$

$$t = 0 \dots p_0 = C_0^0 = 1$$

$$t = 1 \dots p_0 = C_1^{1/2} = 0, \ p_1 = C_1^1 = p_{-1} = C_1^0 = 1/2$$

Solution using discrete Fourier transfrom

Discrete Fourier transform

$$p(i,t|0,0) = \sum_{k} \hat{p}_{k}(t)e^{-Iik}, \quad I = \sqrt{-1}$$

Note that

$$p(i+1,t|0,0) = \sum_{k} \hat{p}_{k}(t)e^{-Iik}e^{-Ik}, \ p(i-1,t|0,0) = \sum_{k} \hat{p}_{k}(t)e^{-Iik}e^{Ik}$$

Master equation

$$\sum_{k} \hat{p}_{k}(t+1)e^{-Iik} = \sum_{k} \frac{1}{2}\hat{p}_{k}(t)e^{-Iik} \left(e^{-Ik} + e^{Ik}\right).$$

In the Fourier space: geometric series for $\hat{p}_k(t)$

$$\hat{p}_k(t+1) = \frac{1}{2}\hat{p}_k(t)\left(e^{-Ik} + e^{Ik}\right).$$

Solution using discrete Fourier transfrom

Solution in the Fourier space

$$\hat{p}_k(t) = \hat{p}^{(0)}(k) \left(\frac{e^{-Ik} + e^{Ik}}{2}\right)^t.$$

Back to the real space

$$p(i,t|0,0) = \sum_{k} e^{Iik} \hat{p}^{(0)}(k) \left(\frac{e^{-Ik} + e^{Ik}}{2}\right)^{t}.$$

Initial conditions: $p(i, t|0, 0) = \delta_{i,0}$

$$p(i,t|0,0) = \sum_{k} e^{Iik} \hat{p}^{(0)}(k) = \delta_{i,0} = \begin{cases} 0, & i \neq 0\\ 1, & i = 0 \end{cases}$$

Binomial formulae

$$(a+b)^t = \sum_{m=0}^t C_t^m a^m b^{t-m}$$

Discrete times

 $t = 0, 1, 2, 3, 4, \dots$

Solution using discrete Fourier transfrom

In the real space

$$p(i,t|0,0) = \sum_{k} \hat{p}^{(0)}(k) \sum_{m=0}^{t} \left(\frac{1}{2}\right)^{t} C_{t}^{m} e^{Iik - Ikm + Ik(t-m)}.$$

Note that

$$\sum_{k} \hat{p}^{(0)}(k) e^{Ik(i-m+t-m)} = \begin{cases} 0, & m \neq (i+t)/2 \\ 1, & m = (i+t)/2 \end{cases}$$

Final answer

$$p(i,t|0,0) = \sum_{m=0}^{t} \delta_{m,(i+t)/2} \left(\frac{1}{2}\right)^{t} C_{t}^{m} = \left(\frac{1}{2}\right)^{t} C_{t}^{(i+t)/2}$$

Example

Solve the master equation for a random walk on a circle. Hint: use discrete Fuorier transform of a finite length array:

Forward transformation

$$\hat{p}_k = \sum_{i=0}^N p_i \exp\left(\frac{2\pi Iik}{N}\right).$$

Backward transformation

$$p_i = \frac{1}{N} \sum_{i=0}^{N} \hat{p}_k \exp\left(\frac{-2\pi I i k}{N}\right).$$

Normalization and completeness

$$\frac{1}{N}\sum_{i=0}^{N}\exp\left(\frac{2\pi Iik}{N}\right) = \delta_{k,0}.$$

Stochastic process $x(t) \in [a, b]$ with absorbing boundaries a, b

$$\Pr(x=a) = \Pr(x=b) = 0$$
 at all times

Initial conditions

$$x(t=0) = x_0 \in [a,b]$$

Exit time

 $t \dots$ time that it takes to exit the interval [a, b] (random variable)

$$\Pr(t \leq \tau) = \int_0^\tau \mathrm{pdf}_{\mathrm{exit}}(t) \, dt$$

Survival probability

 $P_s(\tau) \dots$ Probability that x(t) is still in [a, b] after τ seconds.

Mean exit time

Relation between survival and exit probabilities

$$P_{s}(\tau) = 1 - \Pr(t \leq \tau)$$

$$P_{s}(\tau) = \int_{0}^{\tau} \operatorname{pdf}_{s}(t) dt$$

$$\Pr(t \leq \tau) = \int_{0}^{\tau} \operatorname{pdf}_{\operatorname{exit}}(t) dt$$

$$\operatorname{pdf}_{s}(\tau) = P_{s}(\tau)' = -\operatorname{pdf}_{\operatorname{exit}}(\tau)$$

Mean exit time

$$\begin{aligned} \langle t \rangle &= \int_0^\infty t \operatorname{pdf}_{\operatorname{exit}}(t) \, dt \\ &= t \operatorname{pdf}_{\operatorname{exit}}(t) |_0^\infty - \int_0^\infty P\left(\int \operatorname{pdf}_{\operatorname{exit}}(t) \, dt\right) \, dt \\ &= \int_0^\infty P_s(t) \, dt \end{aligned}$$

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics

DANDOR	walk	WETH	ABSORB	NING 1	30cm	DORIES
--------	------	------	--------	--------	------	--------

		JI.	
		101234561	Survival probability
			- <u>+</u> -+>
	0	0001000	I X
x=0	1	0010200	I
and	2	010120440	1
x = 6	Z73	00303000	6
are two classoraing	ý	$0 \frac{3}{16} 0 \frac{6}{16} 0 \frac{3}{16} 0$	6
BOUNDaRies!	2	$\begin{array}{c} & & & & \\ & & & & \\ 0 & & & 9 \\ 0 & & & 32 \end{array}$	18 32
$P_{x}(x=0)=0$ $P_{y}(x=6)=0$	6	0 9 0 18 0 9 0	18
at all times!	7	$0 0 \frac{27}{128} 0 \frac{21}{128} 0 0$	54
	8	$10\frac{27}{256}$ $0\frac{54}{256}$ $0\frac{21}{256}$ $0\frac{21}{256}$ $0\frac{21}{256}$	128
	T	ÎKE	

Biased random walk

- Walker starts at $x \in [0, a]$
- Absorbing boundaries x = 0 and x = a.
- Right and left transition probabilities: p and q = 1 p, respectively.

Gambler's ruin problem

 $x \dots$ associated with gambler's wealth $p \dots$ the probability to win in each game q = 1 - p, $(q > p) \dots$ the probability to lose in each game

Starting at x, what is the probability P_x of reaching x = 0 (ruin) before reaching x = a (infinite wealth)?

Gambling and the ruin problem

The master equation for P_x

$$P_x = pP_{x+1} + qP_{x-1}$$

boundary conditions

$$q_0 = 1, \ q_a = 0$$

General solution of the difference equation

$$q_x = C_1 + C_2 (q/p)^x$$
, if $q \neq p$,
 $q_x = C_1 + C_2 x$ if $q = p$.

From the boundary conditions, we obtain

$$P_x = \frac{(q/p)^a - (q/p)^x}{(q/p)^a - 1}, \text{ if } q \neq p,$$

$$P_x = 1 - x/a \text{ if } q = p.$$

What happens if $a \to \infty$?

Gambling and the ruin problem

Plots of P_x

Starting with wealth x, what is the probability of reaching a total fortune of a before going bankrupt?

$$F_x = 1 - P_x = \frac{1 - (q/p)^x}{1 - (q/p)^a}, \text{ if } q \neq p,$$

 $F_x = 1 - P_x = x/a \text{ if } q = p.$

Applications in

- Risk insurance
- Stock markets

Example

Insurance company earns \$10 per day from premiums. However, independent of the past, it suffers a claim of \$20 per day with probability q. **Question:** If the initial reserve of the company is \$A, what is the probability that the company will eventually go bankrupt?

Solution:

Each day the total fortune of the company either increases by \$10 if no claims occured, or decreases by 20 - 10 = 10 if claims have occured. The respective probabilities are q (decrease of fortune) and 1 - q (increase of fortune).

Solution continued:

Assume q < 1 - q,

$$P_{x=\$A} = \lim_{a \to \infty} \frac{(q/(1-q))^a - (q/(1-q))^{\$A}}{(q/(1-q))^a - 1} = \left(\frac{q}{1-q}\right)^{\$A}$$

Finite but small, if the initial fortune A is large. Assume q>1-q,

$$P_{x=\$A} = \lim_{a \to \infty} \frac{(q/(1-q))^a - (q/(1-q))^{\$A}}{(q/(1-q))^a - 1} = 1$$

Ruin will certainly occur

Gambling and the ruin problem

Average duration of the game (Mean exit time)

Average number of steps (played games) before reaching either x = 0, or x = a.

Master equation for the mean exit time D_x if the walker starts in x

$$D_x = pD_{x+1} + qD_{x-1} + 1$$

Boundary conditions

$$D_0 = D_a = 0$$

General solution

$$D_x = \frac{x}{q-p} + C_1 + C_2(q/p)^x, \text{ if } q \neq p,$$

$$D_x = C_1 + C_2 x - x^2 \text{ if } q = p.$$

From the boundary conditions

$$D_x = \frac{x}{q-p} - \frac{a}{q-p} \frac{1 - (q/p)^x}{1 - (q/p)^a}, \quad \text{if} \quad q \neq p,$$

$$D_x = x(a-x) \quad \text{if} \quad q = p.$$

AMSI 2017 22 / 40

Gambling and the ruin problem

Plots of D_x

Continuous limit

Master equation

$$p(x, t + \delta t | x_0, t_0) = \frac{1}{2} (p(x - \Delta, t | x_0, t_0) + p(x + \Delta, t | x_0, t_0)).$$

Let $\delta t, \Delta \to 0$

$$p(x, t + \delta t | x_0, t_0) \approx p(x, t | x_0, t_0) + \partial_t p(x, t | x_0, t_0) \delta t$$

= $\frac{1}{2} (p(x - \Delta, t | x_0, t_0) + p(x + \Delta, t | x_0, t_0)),$

$$\begin{split} & \partial_t p(x,t|x_0,t_0) = \\ & \frac{\Delta^2}{2\delta t} \frac{\left[(p(x-\Delta,t|x_0,t_0) + p(x+\Delta,t|x_0,t_0) - 2p(x,t|x_0,t_0) \right]}{\Delta^2} \\ \approx & \frac{\Delta^2}{2\delta t} \frac{\partial^2 p(x,t|x_0,t_0)}{\partial x^2}. \end{split}$$

Continuous limit

The Fokker-Planck equation

If $\lim_{(\delta t, \Delta \to 0)} \frac{\Delta^2}{2\delta t} = constant$, random walk corresponds to diffusion.

$$\frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2}$$

Diffusion coefficient

$$D = \frac{\Delta^2}{2\delta t}$$

Solution of the Fokker-Planck equation

$$p(x,t|x_0,t_0) = \frac{1}{\sqrt{4\pi D(t-t_0)}} \exp\left(-\frac{(x-x_0)^2}{4D(t-t_0)}\right).$$

Diffusional spreading

Example distribution D = 1, $x_0 = t_0 = 0$

Stationary process?

Random walk on a line and diffusion along a line are not stationary:

$$\lim_{t_0 \to -\infty} p(x, t | x_0, t_0) = 0$$

Ensemble averaged position

$$\langle x|x_0, t_0 \rangle = \int_{-\infty}^{\infty} \frac{x \, dx}{\sqrt{4\pi D(t-t_0)}} \exp\left(-\frac{(x-x_0)^2}{4D(t-t_0)}\right) = x_0$$

Ensemble averaged square coordinate

$$\langle x^2 | x_0, t_0 \rangle = \int_{-\infty}^{\infty} \frac{x^2 \, dx}{\sqrt{4\pi D(t - t_0)}} \exp\left(-\frac{(x - x_0)^2}{4D(t - t_0)}\right) = x_0^2 + 2D(t - t_0)$$

Diffusion coefficient of a 1D stochastic process x(t)

$$D = \lim_{t \to t_0 \to \infty} \frac{\langle x^2 | x_0, t_0 \rangle - x_0^2}{2(t - t_0)}$$

n dimensional random walk

In an n-dimensional space the diffusion process (or random walk) is a superposition of independent and identical diffusion processes (random walks) along each of the n dimensions.

in 3D the diffusion equation is

$$\frac{\partial p(x,y,z,t)}{\partial t} = D\Delta p(x,y,z,t) = D\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) p(x,y,z,t)$$

Diffusion coefficient in n dimensional space

$$D = \lim_{t \to t_0 \to \infty} \left(rac{1}{n}
ight) rac{\langle oldsymbol{r}^2 | x_0, t_0
angle - x_0^2}{2(t-t_0)},$$

with

$$r^2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2.$$

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics

Returning probability

It is possible to show that the probability to return to the initial position after \boldsymbol{n} steps is given by

$$1D: \Pr(i=0,t=n|0,0) \sim \frac{1}{n^{1/2}}, \qquad \sum_{n=N}^{\infty} \Pr(i=0,t=n|0,0) = \infty$$
$$2D: \Pr(i=0,t=n|0,0) \sim \frac{1}{n}, \qquad \sum_{n=N}^{\infty} \Pr(i=0,t=n|0,0) = \infty$$
$$3D: \Pr(i=0,t=n|0,0) \sim \frac{1}{n^{3/2}}, \qquad \sum_{n=N}^{\infty} \Pr(i=0,t=n|0,0) < \infty$$

AMSI 2017

29 / 40

1D vs 2D vs 3D

Random walk is recurrent in 1D and 2D and transient in 3D

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics

Autocorrelation function (ACF)

Recall the definition of the ACF

$$ACF(t, t'|x_0, t_0) = \langle x(t)x'(t')|x_0, t_0 \rangle = \int \int dx \, dx' x \, x' p(x, t; x', t'|x_0, t_0)$$

Diffusion process is Markovian

$$p(x,t;x',t'|x_0,t_0) = p(x,t|x',t')p(x',t'|x_0,t_0), \ (t \ge t' \ge t_0)$$

Using the solution of the diffusion equation

$$p(x,t|x',t') = \frac{1}{\sqrt{4\pi D(t-t')}} \exp\left(-\frac{(x-x')^2}{4D(t-t')}\right)$$
$$p(x',t'|x_0,t_0) = \frac{1}{\sqrt{4\pi D(t'-t_0)}} \exp\left(-\frac{(x'-x_0)^2}{4D(t'-t_0)}\right)$$

Autocorrelation function (ACF)

Calculating ACF

$$ACF(t, t'|x_0, t_0) = \int \int dx \, dx' \frac{x \, x'}{4\pi D \sqrt{(t - t')(t' - t_0)}} \times \\ \exp\left(-\frac{(x - x')^2}{4D(t - t')}\right) \exp\left(-\frac{(x' - x_0)^2}{4D(t' - t_0)}\right)$$

Changing the integration variables

$$x - x' = y \Big|_{-\infty}^{\infty}, \ x' = x' \Big|_{-\infty}^{\infty}$$

Autocorrelation function (ACF)

$$ACF(t, t'|x_0, t_0) = \int \int dy \, dx' \frac{x'(y+x')}{\sqrt{4\pi D(t-t')}} \frac{1}{4\pi D(t'-t_0)} \times \\ \exp\left(-\frac{y^2}{4D(t-t')}\right) \exp\left(-\frac{(x'-x_0)^2}{4D(t'-t_0)}\right) \\ = \langle x'(t')^2 | x_0, t_0 \rangle \langle 1 | 0, t' \rangle + \langle y(t) | 0, t' \rangle \langle x'(t') | x_0, t_0 \rangle \langle x_0 \rangle \langle x_0$$

Absence of the stationary limit

ACF does not depend on (t - t'):

$$ACF(t, t'|x_0, t_0) = 2D(t' - t_0), \ t \ge t' \ge t_0$$

Master equation for $q \neq p$

$$P(x, t + \delta t | x_0, t_0) = pP(x - \Delta, t | x_0, t_0) + qP(x + \Delta, t | x_0, t_0).$$

Fokker-Planck equation in continuous limit $\delta t, \Delta \rightarrow 0$

$$\partial_t P \approx \frac{1}{\delta t} \left(pP(x - \Delta, t) + qP(x + \Delta, t) - P(x, t) \right)$$

$$= \frac{1}{\delta t} \left(p(P - \Delta \partial_x P + \Delta^2 / 2\partial_x^2 P) + q(P + \Delta \partial_x P + \Delta^2 / 2\partial_x^2 P) - P \right)$$

$$= \frac{1}{\delta t} \left(-(p - q)\Delta \partial_x P + (p + q)\Delta^2 / 2\partial_x^2 P \right)$$

$$= \frac{-(p - q)\Delta}{\delta t} \partial_x P + \frac{\Delta^2}{2\delta t} \partial_x^2 P$$

Exercise: inhomogeneous biased random walk

Show that in case of the position dependent $p(\boldsymbol{x})$ and $q(\boldsymbol{x}),$ the Fokker-Planck eqiation is given by

$$\partial_t P(x,t) = -\partial_x (f(x)P(x,t)) + D\partial_x^2 P(x,t),$$

with $f(x) = \Delta \frac{p(x)-q(x)}{\delta t} \dots$ drift force $D = \frac{\Delta^2}{2\delta t} \dots$ diffusion coefficient

Biased random walk: continuous limit

Continuity of the probability

$$\partial_t P(x,t) + \partial_x J(x,t) = 0$$

Probability current

$$J(x,t) = f(x)P(x,t) - D\partial_x P(x,t)$$

Drift force

Note that f(x) is equivalent to a force, acting on the Brownian particle in the positive x-direction.

Example

A protein passes through a translocation pore of a cell (see Fig.). The rod is made of identical sections (segments) of the length δ . The pore acts as a perfect ratchet, only allowing the motion to the right. *C. S. Peskin et al, "Cellular Motion and Thermal Fluctuations: The Brownian Ratchet", Biophysical Journal* **65** *316-324* (1993)

Probability flux

$$J(x,t) = -\mu f P(x,t) - D\partial_x P(x,t),$$

 $P(x,t) \dots$ probability density of the right end of the rod $\mu f \dots$ load force, acting against the drift **Boundary conditions** $P(x = \delta, t) \dots$ absorbing boundary at $x = \delta$ $J(0,t) = J(\delta,t) \dots$ periodicity of the probability flux:

Conservation of mass

The number of monomers that enter the cell equals the number of monomers, removed from the system at $x = \delta$.

Stationary regime:

$$J(x) = J_0 = constant$$

$$P_s(x) = Ae^{(-\mu f x/D)} - \frac{J_0}{\mu f},$$

From the bounadry conditions

$$A = \frac{J_0}{\mu f} e^{(\mu f \delta/D)}.$$

Normalizing the density to the number of Brownian particles N

$$\int_{0}^{\delta} P_{s}(x) dx = N, \text{ or}$$

$$\frac{J_{0}}{\mu f} \left[\frac{D}{\mu f} \left(e^{\mu f \delta/D} - 1 \right) - \delta \right] = N$$

Realtion between average drift velocity and flux

$$\mathrm{flux} = \frac{\langle dN \rangle}{dt} = \frac{\langle V \rangle dt \text{ average } N \text{ per length}}{dt} = \frac{\langle V \rangle dt}{dt} \frac{N}{\delta} = \frac{\langle V \rangle N}{\delta}$$

$$\langle V \rangle = \frac{D}{\delta} \frac{\omega^2}{e^{\omega} - 1 - \omega}, \text{ with } \omega = \delta \mu f / D$$

Limit of zero load

$$V_0 = \lim_{\omega \to 0} \frac{D}{\delta} \frac{\omega^2}{e^\omega - 1 - \omega} = \frac{D}{\delta} \frac{\omega^2}{1 + \omega + \omega^2/2 + \dots - 1 - \omega} = \frac{2D}{\delta}$$

Relation to Feynman's ratchet

Ratchet mechanism is fueled by chemical reactions. System is out of equilibrium.

For imperfect translocation ratchet as well as the polymerization ratchets, see the original paper.