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Lecture 3:

Examples of stochastic processes
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Random walk in one dimension

A walker moves along a line and makes one step at a time of a fixed
length ∆ either to the left or to the right with equal probability of 1/2.
The time intervals between two subsequent steps is δt.
Transitional probability p(x, t+ 1|y, t)

p(x, t+ δt|y, t) =
{

1
2 , if | x− y |= ∆
0, otherwise

For simplicity assume

∆ = ±1, δt = 1, x0 = 0, t0 = 0
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Random walk in one dimension

Master equation

p(i, t+ 1|0, 0) = 1

2
(p(i− 1, t|0, 0) + p(i+ 1, t|0, 0)).
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Random walk in one dimension

Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Binomial coefficients

Ck
n =

n!

k!(n− k)!
=

(

k

n

)
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Random walk in one dimension

General solution

p(i, t|0, 0) =
(

1

2

)t

C
(i+t)/2
t ,

with

Ck
n =

{

n!
k!(n−k)! , integer n ≥ k

0, otherwise

t = 0 . . . p0 = C0
0 = 1

t = 1 . . . p0 = C
1/2
1 = 0, p1 = C1

1 = p−1 = C0
1 = 1/2
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Solution using discrete Fourier transfrom

Discrete Fourier transform

p(i, t|0, 0) =
∑

k

p̂k(t)e
−Iik, I =

√
−1

Note that

p(i+ 1, t|0, 0) =
∑

k

p̂k(t)e
−Iike−Ik, p(i− 1, t|0, 0) =

∑

k

p̂k(t)e
−IikeIk

Master equation

∑

k

p̂k(t+ 1)e−Iik =
∑

k

1

2
p̂k(t)e

−Iik
(

e−Ik + eIk
)

.

In the Fourier space: geometric series for p̂k(t)

p̂k(t+ 1) =
1

2
p̂k(t)

(

e−Ik + eIk
)

.
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Solution using discrete Fourier transfrom

Solution in the Fourier space

p̂k(t) = p̂(0)(k)

(

e−Ik + eIk

2

)t

.

Back to the real space

p(i, t|0, 0) =
∑

k

eIikp̂(0)(k)

(

e−Ik + eIk

2

)t

.

Initial conditions: p(i, t|0, 0) = δi,0

p(i, t|0, 0) =
∑

k

eIikp̂(0)(k) = δi,0 =

{

0, i 6= 0
1, i = 0
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Solution using discrete Fourier transfrom

Binomial formulae

(a+ b)t =
t

∑

m=0

Cm
t ambt−m

Discrete times
t = 0, 1, 2, 3, 4, . . .
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Solution using discrete Fourier transfrom

In the real space

p(i, t|0, 0) =
∑

k

p̂(0)(k)
t

∑

m=0

(

1

2

)t

Cm
t eIik−Ikm+Ik(t−m).

Note that

∑

k

p̂(0)(k)eIk(i−m+t−m) =

{

0, m 6= (i+ t)/2
1, m = (i+ t)/2

Final answer

p(i, t|0, 0) =
t

∑

m=0

δm,(i+t)/2

(

1

2

)t

Cm
t =

(

1

2

)t

C
(i+t)/2
t
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Exercise: random walk on a circle

Example

Solve the master equation for a random walk on a circle. Hint: use
discrete Fuorier transform of a finite length array:

Forward transformation

p̂k =
N
∑

i=0

pi exp

(

2πIik

N

)

.

Backward transformation

pi =
1

N

N
∑

i=0

p̂k exp

(−2πIik

N

)

.

Normalization and completeness

1

N

N
∑

i=0

exp

(

2πIik

N

)

= δk,0.
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Mean exit time

Stochastic process x(t) ∈ [a, b] with absorbing boundaries a, b

Pr(x = a) = Pr(x = b) = 0 at all times

Initial conditions
x(t = 0) = x0 ∈ [a, b]

Exit time
t . . . time that it takes to exit the interval [a, b] (random variable)

Pr(t ≤ τ) =

∫ τ

0
pdfexit(t) dt

Survival probability
Ps(τ) . . . Probability that x(t) is still in [a, b] after τ seconds.
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Mean exit time

Relation between survival and exit probabilities

Ps(τ) = 1− Pr(t ≤ τ)

Ps(τ) =

∫ τ

0
pdfs(t) dt

Pr(t ≤ τ) =

∫ τ

0
pdfexit(t) dt

pdfs(τ) = Ps(τ)
′ = −pdfexit(τ)

Mean exit time

〈t〉 =

∫

∞

0
t pdfexit(t) dt

= t pdfexit(t)|∞0 −
∫

∞

0
P

(
∫

pdfexit(t) dt

)

dt

=

∫

∞

0
Ps(t) dt
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Gambling and the ruin problem

Biased random walk

Walker starts at x ∈ [0, a]

Absorbing boundaries x = 0 and x = a.

Right and left transition probabilities: p and q = 1− p, respectively.

Gambler’s ruin problem

x . . . associated with gambler’s wealth
p . . . the probability to win in each game
q = 1− p, (q > p) . . . the probability to lose in each game

Starting at x, what is the probability Px of reaching x = 0 (ruin)
before reaching x = a (infinite wealth)?
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Gambling and the ruin problem

The master equation for Px

Px = pPx+1 + qPx−1

boundary conditions

q0 = 1, qa = 0

General solution of the difference equation

qx = C1 + C2(q/p)
x, if q 6= p,

qx = C1 + C2x if q = p.
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Gambling and the ruin problem

From the boundary conditions, we obtain

Px =
(q/p)a − (q/p)x

(q/p)a − 1
, if q 6= p,

Px = 1− x/a if q = p.

What happens if a → ∞?
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Gambling and the ruin problem

Plots of Px
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a=10 a=1015 1520 20
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Gambling and the ruin problem

Starting with wealth x, what is the probability of reaching a total
fortune of a before going bankrupt?

Fx = 1− Px =
1− (q/p)x

1− (q/p)a
, if q 6= p,

Fx = 1− Px = x/a if q = p.

Applications in

Risk insurance

Stock markets
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Gambling and the ruin problem

Example

Insurance company earns $10 per day from premiums. However,
independent of the past, it suffers a claim of $20 per day with probability q.
Question: If the initial reserve of the company is $A, what is the
probability that the company will eventually go bankrupt?

Solution:
Each day the total fortune of the company either increases by $10 if no
claims occured, or decreases by $20− $10 = $10 if claims have occured.
The respective probabilities are q (decrease of fortune) and 1− q (increase
of fortune).
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Gambling and the ruin problem

Solution continued:
Assume q < 1− q,

Px=$A = lim
a→∞

(q/(1− q))a − (q/(1− q))$A

(q/(1− q))a − 1
=

(

q

1− q

)$A

Finite but small, if the initial fortune $A is large.
Assume q > 1− q,

Px=$A = lim
a→∞

(q/(1− q))a − (q/(1− q))$A

(q/(1− q))a − 1
= 1

Ruin will certainly occur
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Gambling and the ruin problem

Average duration of the game (Mean exit time)

Average number of steps (played games) before reaching either x = 0, or
x = a.

Master equation for the mean exit time Dx if the walker starts in x

Dx = pDx+1 + qDx−1 + 1

Boundary conditions
D0 = Da = 0

General solution

Dx =
x

q − p
+ C1 + C2(q/p)

x, if q 6= p,

Dx = C1 + C2x− x2 if q = p.
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Gambling and the ruin problem

From the boundary conditions

Dx =
x

q − p
− a

q − p

1− (q/p)x

1− (q/p)a
, if q 6= p,

Dx = x(a− x) if q = p.
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Gambling and the ruin problem

Plots of Dx
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Continuous limit

Master equation

p(x, t+ δt|x0, t0) =
1

2
(p(x−∆, t|x0, t0) + p(x+∆, t|x0, t0)).

Let δt, ∆ → 0

p(x, t+ δt|x0, t0) ≈ p(x, t|x0, t0) + ∂tp(x, t|x0, t0)δt

=
1

2
(p(x−∆, t|x0, t0) + p(x+∆, t|x0, t0)),

∂tp(x, t|x0, t0) =
∆2

2δt

[(p(x−∆, t|x0, t0) + p(x+∆, t|x0, t0)− 2p(x, t|x0, t0)]
∆2

≈ ∆2

2δt

∂2p(x, t|x0, t0)
∂x2

.
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Continuous limit

The Fokker-Planck equation

If lim(δt,∆→0)
∆2

2δt = constant, random walk corresponds to diffusion.

∂p

∂t
= D

∂2p

∂x2

Diffusion coefficient

D =
∆2

2δt

Solution of the Fokker-Planck equation

p(x, t|x0, t0) =
1

√

4πD(t− t0)
exp

(

− (x− x0)
2

4D(t− t0)

)

.
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Diffusional spreading

Example distribution D = 1, x0 = t0 = 0

-4 -2 0 2 4
x

0

0.5

1

1.5
p(

 x
,t 

| 0
,0

 )
t=0

t=0.1

t=1

Stationary process?

Random walk on a line and diffusion along a line are not stationary:

lim
t0→−∞

p(x, t|x0, t0) = 0
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Diffusion coefficient

Ensemble averaged position

〈x|x0, t0〉 =
∫

∞

−∞

x dx
√

4πD(t− t0)
exp

(

− (x− x0)
2

4D(t− t0)

)

= x0

Ensemble averaged square coordinate

〈x2|x0, t0〉 =
∫

∞

−∞

x2 dx
√

4πD(t− t0)
exp

(

− (x− x0)
2

4D(t− t0)

)

= x20 + 2D(t− t0)

Diffusion coefficient of a 1D stochastic process x(t)

D = lim
t−t0→∞

〈x2|x0, t0〉 − x20
2(t− t0)
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Diffusion in higher dimensions

n dimensional random walk

In an n-dimensional space the diffusion process (or random walk) is a
superposition of independent and identical diffusion processes (random
walks) along each of the n dimensions.

in 3D the diffusion equation is

∂p(x, y, z, t)

∂t
= D∆p(x, y, z, t) = D

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

p(x, y, z, t)

Diffusion coefficient in n dimensional space

D = lim
t−t0→∞

(

1

n

) 〈r2|x0, t0〉 − x20
2(t− t0)

,

with
r
2 = x21 + x22 + x23 + · · ·+ x2n.
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Recurrence and transitivity of a random walk

Returning probability

It is possible to show that the probability to return to the initial position
after n steps is given by

1D : Pr(i = 0, t = n|0, 0) ∼ 1

n1/2
,

∞
∑

n=N

Pr(i = 0, t = n|0, 0) = ∞

2D : Pr(i = 0, t = n|0, 0) ∼ 1

n
,

∞
∑

n=N

Pr(i = 0, t = n|0, 0) = ∞

3D : Pr(i = 0, t = n|0, 0) ∼ 1

n3/2
,

∞
∑

n=N

Pr(i = 0, t = n|0, 0) < ∞

1D vs 2D vs 3D

Random walk is recurrent in 1D and 2D and transient in 3D
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Autocorrelation function (ACF)

Recall the definition of the ACF

ACF(t, t′|x0, t0) = 〈x(t)x′(t′)|x0, t0〉 =
∫ ∫

dx dx′xx′p(x, t;x′, t′|x0, t0)

Diffusion process is Markovian

p(x, t;x′, t′|x0, t0) = p(x, t|x′, t′)p(x′, t′|x0, t0), (t ≥ t′ ≥ t0)

Using the solution of the diffusion equation

p(x, t|x′, t′) =
1

√

4πD(t− t′)
exp

(

− (x− x′)2

4D(t− t′)

)

p(x′, t′|x0, t0) =
1

√

4πD(t′ − t0)
exp

(

− (x′ − x0)
2

4D(t′ − t0)

)
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Autocorrelation function (ACF)

Calculating ACF

ACF(t, t′|x0, t0) =

∫ ∫

dx dx′
xx′

4πD
√

(t− t′)(t′ − t0)
×

exp

(

− (x− x′)2

4D(t− t′)

)

exp

(

− (x′ − x0)
2

4D(t′ − t0)

)

Changing the integration variables

x− x′ = y
∣

∣

∣

∞

−∞

, x′ = x′
∣

∣

∣

∞

−∞
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Autocorrelation function (ACF)

ACF(t, t′|x0, t0) =

∫ ∫

dy dx′
x′ (y + x′)

√

4πD(t− t′)

1

4πD(t′ − t0)
×

exp

(

− y2

4D(t− t′)

)

exp

(

− (x′ − x0)
2

4D(t′ − t0)

)

= 〈x′(t′)2|x0, t0〉〈1|0, t′〉+ 〈y(t)|0, t′〉〈x′(t′)|x0, t0〉

Absence of the stationary limit

ACF does not depend on (t− t′):

ACF(t, t′|x0, t0) = 2D(t′ − t0), t ≥ t′ ≥ t0
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Biased random walk: continuous limit

Master equation for q 6= p

P (x, t+ δt|x0, t0) = pP (x−∆, t|x0, t0) + qP (x+∆, t|x0, t0).

Fokker-Planck equation in continuous limit δt, ∆ → 0

∂tP ≈ 1

δt
(pP (x−∆, t) + qP (x+∆, t)− P (x, t))

=
1

δt

(

p(P −∆∂xP +∆2/2∂2
xP ) + q(P +∆∂xP +∆2/2∂2

xP )− P
)

=
1

δt

(

−(p− q)∆∂xP + (p+ q)∆2/2∂2
xP

)

=
−(p− q)∆

δt
∂xP +

∆2

2δt
∂2
xP
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Biased random walk: continuous limit

Exercise: inhomogeneous biased random walk

Show that in case of the position dependent p(x) and q(x), the
Fokker-Planck eqiation is given by

∂tP (x, t) = −∂x(f(x)P (x, t)) +D∂2
xP (x, t),

with
f(x) = ∆p(x)−q(x)

δt . . . drift force

D = ∆2

2δt . . . diffusion coefficient
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Biased random walk: continuous limit

Continuity of the probability

∂tP (x, t) + ∂xJ(x, t) = 0

Probability current

J(x, t) = f(x)P (x, t)−D∂xP (x, t)

Drift force

Note that f(x) is equivalent to a force, acting on the Brownian particle in
the positive x-direction.
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Translocation of polymers through cell membrane

Example

A protein passes through a translocation pore of a cell (see Fig.). The rod
is made of identical sections (segments) of the length δ. The pore acts as
a perfect ratchet, only allowing the motion to the right.
C. S. Peskin et al, “Cellular Motion and Thermal Fluctuations: The
Brownian Ratchet”, Biophysical Journal 65 316-324 (1993)

δ0

x

pore

polymer
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Translocation of polymers through cell membrane

Probability flux

J(x, t) = −µfP (x, t)−D∂xP (x, t),

P (x, t) . . . probability density of the right end of the rod
µf . . . load force, acting against the drift
Boundary conditions
P (x = δ, t) . . . absorbing boundary at x = δ
J(0, t) = J(δ, t) . . . periodicity of the probability flux:

Conservation of mass

The number of monomers that enter the cell equals the number of
monomers, removed from the system at x = δ.
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Translocation of polymers through cell membrane

Stationary regime:

J(x) = J0 = constant

Ps(x) = Ae(−µfx/D) − J0
µf

,

From the bounadry conditions

A =
J0
µf

e(µfδ/D).

Normalizing the density to the number of Brownian particles N

∫ δ

0
Ps(x) dx = N, or

J0
µf

[

D

µf

(

eµfδ/D − 1
)

− δ

]

= N
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Translocation of polymers through cell membrane

Realtion between average drift velocity and flux

flux =
〈dN〉
dt

=
〈V 〉dt average N per length

dt
=

〈V 〉dt
dt

N

δ
=

〈V 〉N
δ

〈V 〉 = D

δ

ω2

eω − 1− ω
, with ω = δµf/D

0 2 4 6 8 10
ω

0

0.5

1

<
V

>
 / 

V
0
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Translocation of polymers through cell membrane

Limit of zero load

V0 = lim
ω→0

D

δ

ω2

eω − 1− ω
=

D

δ

ω2

1 + ω + ω2/2 + · · · − 1− ω
=

2D

δ

Relation to Feynman’s ratchet

Ratchet mechanism is fueled by chemical reactions. System is out of
equilibrium.

For imperfect translocation ratchet as well as the polymerization ratchets,
see the original paper.
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