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Stochastic differential equations
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The Wiener-Khinchin theorem

ACF of a real-valued signal z(t)
1 T
G(7) = lim / dtz(t)z(t + 1),
0

Forward Fourier transform of z(t)

T
Bw) = /O dte= ().
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The Wiener-Khinchin theorem

Power spectral density S(w) (psd)

. | 2
Sw) = Th_{Y;O%iTW(WH,

Wiener-Khinchin theorem

S(w) = — lim [ dre ()

21 T—oo _T
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Norbert Wiener

American mathematician (1894-1964) proved the theorem in 1930
for a deterministic process z(t)
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Aleksandr Yakovlevich Khinchin

Russian mathematician (1894-1959) proved the theorem in 1934 for
a stochastic process z(t)
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Wiener-Khinchin theorem

Proof

T
S(w) = lim 1/ dtemx(t)/ dt'e™ 2+ (')
0

T—oo 27T

= {tt)— {t,7=t-1t)}
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Proof continued

1 T ) T—1
S(w) = lim — [/ dTe_“”/ dt'z(t)x*(t' + 1)
0 0

T—oo 27T
0 T
+ / dre—T / dt’sc(t’)x*(t’—i—r)]
=T -7

= L green et + o)
27T

-T

+ /OT dre T (TG(r) + 0(1))}

T

1 :
= — lim dre T G(T)
2T T—oo T

Wiener-Khinchin theorem
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Wiener-Khinchin theorem

Using G(—7) = G(7)

1 [ ;
S(w) = 277/ G(r)eF“Tdr
_ 1/00 G(1) d
= %) T) cos wrdr
1 o
= / G(7) coswrdr
T Jo

psd is an even function
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Wiener-Khinchin theorem

Delta function representation

1 [ L.
d(x) / eFT

:% -

ACF and psd

ACF is obtained as inverse Fourier transform of the psd.

G(r) = / " TS () du.

—00

psd is obtained as forward Fourier transform of the ACF.

S(w) ! /Oo TG (T)dr.

:% .
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Stochastic vs deterministic processes

Deterministic signal z(t)

Fourier decomposition

Any deterministic signal x(¢) can always be represented as a superposition

of periodic functions
x(t) = AcosQt

Fourier transform Z(w)
T . A [T . . .
P(w) = / dte”™' AcosQt = 2/ dte™ (M 4 M)
0 0

it(2—w) o it(Q+w)

A (5 -t |, wren
2

T, w =10

A
= T;(%,Q + 0w.—q) + O(T)

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physict AMSI 2017 11 /39



deterministic processes: psd

psd S(w)
gy HWEw) 1 (A )2
Se) = i DT i L (1560 +bum0) + 0T
AT ) . »
= lim — (bqw +0w-0)*+O(T)+O0(T )
T—oo 8T
AT 9 0
= lim 7(5Qw+5w _q)+O(T")+0(T~ )
T—oo 8T

Infinite power of a deterministic signal
im0 S(w =10) = 0o
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deterministic processes: ACF

ACF G(7)
1 T A2 T
G(r) = Tlgﬁgo T/o dtz(t)x(t +71) = Tlgréo T/o dt cos Qt cos Q(t + 1)
A2 T
= lim — / dt (0082 Qt cos Q1 — sin Qf cos Qt sin QT)
T—o0 0
= Tlgréo T /0 dt <2[1 + cos 2Qt] cos QT — 5 sin 20t sin QT)
A?cos Qr

— # +O(1/T)

Infinite correlation time

ACF G(7) of a deterministic signal does not vanish as 7 — 0.
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deterministic processes: ACF and psd

Limit of large time window T’

As T — oo, the Wiener-Khinchin theorem implies

S(w) = L [~ e~ “TGQ(T)dr = A= e T cos Qrd
w) = o i T)dT = - TdT
_ ?_ oW (6197 + e*ZQT) dr
T J—00
AQ
= I(é(w—Q)—HS(w—i—Q))

v

Only works for square-integrable functions
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Stochastic porcess z(t)

Special case of a random telegraph process
z(t)==£1, A=p
Recall stationary ACF G(7)

G(T) _ (1 — (—1))2,11,2

exp [—2pu|r|] = e 27!
S e -2l

G(7) is square-integrable on (—o0, 00)

Applying the Wiener-Khinchin theorem
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Stochastic porcess z(t)

psd from the Wiener-Khinchin theorem

1 &0 :
S(w) = by e 2HTl i g
—0

1 & .
= Re (2/ 6_2’”6_“”d7>
2 0
—T(2ptiw) oo
~ Re(LelM
T —(2u+iw)lo

)

2p
m(4p? + w?)
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Stochastic vs deterministic processes

15 . I
I (b) |
1 -
\
g RN — deterministic

05 X — — stochastic

0 ———————
1 1 I
0 4
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Stochastic process x(¢) with zero mean and zero correlation time

(x®))=0,  (x@Ox))=d(t—1)

psd
1

1 & .
S(w) = 27r/ o(T)e T dr = o
—0oQ0

Equal power density for any frequency l
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Colored noise

Stochastic process 7)(t) with any non-constant psd S(w) # constant

@ Pink noise: S(w) =w™!

@ Brownian noise (red noise): S(w) = w2
w, w € [0,wp]

@ Blue noise: S(w) :{ 0, otherwise

pink
white

Sw)

pd
Brownian
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Colored noise

Flavours of the noise

For each noise color one can define infinitely many different flavours,
depending on the distribution of = at any given time.

Discretized signal
In practice, we descretize z(t) by choosing a time step At:

x(ti), t; = tg + 1At (i:0,1,2,3,...)
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White Gaussian noise

Generated by

1 1
Indeed
0, 1#k
(@(ti)) =0, Gt —t;) = (z(ti)z(ty)) = { Lo ’ k
A YT

Representation of the Dirac A

_ i 1.
delta-function §(t) = At At

O] | --> k-
[0, t#0 _ i
0—Y ‘
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Uniform white noise

Generated by

x(t;) ~ \/gUniform([—l, 1])

Indeed
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Gaussian and uniform white noise

White uniform White Gaussian
T T [ T [

| | | |
0 200f 400 0 200; 400
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The Wiener process

Stochastic process w(t) with conditional probability

1
8tp(w7t‘w07 tO) = 583217(1”7 t’w07t0)'
Solution of the diffusion equation with D =1/2

(w—wo)2>.

1
w, tlwg, tg) = ————exp | —
p(w, tlwo, to) o) P< 20— to)
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Wiener process: independents of increments Aw;

Markovian property

For any t; > t;_1, the increments Aw; = w(¢t;) — w(t;—1) are independent
with the distribution

1 (’LUZ‘ —wi_1)2>
Aw;) = p(w;, tlwi_1,t;1) = ————exp | —————
p(Aw;) = p(w;, ti|wi—1,ti-1) = r—— p( :

Awi ~ N(O, (tz' — ti—l)) = N(O, At)
((Aw,)2> = At = ti — ti—l
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Wiener process as a solution of stochastic

differential equation

Derivative of the Wiener process

White Gaussian noise £(t)
Aw 1 1
£t) = A N (07 Kt) = _\/A_tN(O’ 1)

Stochastic differential equation for w(t)

dw(t) _ . . Aw
g~ W) = lim o =<0
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Wiener process and Brownian motion

Brownian motion

The Wiener process w(t) is generated by

w(tiy1) = w(t)) + NO,1)VAEL, (i=0,1,2,3,...).

Describes the coordinate of a Brownian particle with the diffusion
coefficient D = 1/2.
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Computation of Power spectral density

Ensemble average of the square of Fourier transformed xz(t)

(Z(w)* (W) = / dt dt'e L (z(t)x(t)),

For a stationary process z(t)

Connection with S(w)
(2(w)d* (W) = /dt A=ttt — ) = {(t,t) = (T =t 1)}

_ /dt/ei(w’—w)t’/dTe—iw’TG(T)

= on / dt' @' S (') = (27)%S (W) (w — ).
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psd of the Wiener process dW/dt = £(t)

In the Fourier space

Consequently

vy E@)E (W)
<$(W)$ (w )>_ (Z(JJ)(—ZLU/)

By the definition of the white noise

€@ = @n? (5 [ Gelriare™ ) sl = ) = 2m)ite — ),
@) = T ars () - o)
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ACF of the Wiener process

Using the Wiener-Khinchin theorem

> 1 TwWT
G(T)—/OOWC dw ~ T.

From ACF to psd

The backward Fourier transformation

1 [ ;
S(w) = %/ Te "“Tdr
—00
does not exist, as the function G(7) ~ 7 is not a square-integrable on the
interval (—oo,00). Physically, it means that the Wiener process is not a
stationary process.
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Ornstein-Uhlenbeck process

Stochastic ODE for z(t)

(t) = —% + %\/ﬁf(t),

with £(t) ... white noise
D ... strength parameter
T ... correlation time
D=0.045, t=1
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Ornstein-Uhlenbeck process

Massive particle of mass M in a gas of molecules m

Momentum and energy conservation in a single elastic collision

V2 1}2 U2 w2
M— — = M— —

5 +m2 2 +m2

MV +mi = MU+ mi

m_ Y MU .r/n
o o o

@ (ID (111)
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Ornstein-Uhlenbeck process

Change of the momentum of the massive particle

2 . oM
™ v

AP = MU - MV = —
M—i—m( )+M—i—m

(m)
Number of collisons within time interval 6t

ot <1, <1, ILi(t,dt) =(1,0)
g

Total momentum change

-, N 2m al 2M
AP = —<Z il 5t)> P+ (Z mIi(tvét)@>

=1
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Langevin equation

Large number of uncorrelated collision events within dt

dp L

Paul Langevin (1872-1946): French physicist
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psd of the Ornstein-Uhlenbeck process

In the Fourier space
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ACF of the Ornstein-Uhlenbeck process

Relation to random telegraph process

Note that the functional form of S(w) is identical with the psd of a
random telegraph process. Compare

2u D 1

Sw) = m(4p? 4+ w?) vs Sw) = 71+ 72w2

This implies that the ACF of the Orstein-Uhlenbeck process has the form

G(t) = 2ettiim

T
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ACF of the Ornstein-Uhlenbeck process

Check using the Wiener-Khinchin theorem

[e%} D ezwt

————dw
2,,2
oo T 1474w

esidual De ‘
= residu
12 (w —i/7)(w +i/T) ) lw=ir—1

= Devr 450

-
Correlation time
ACF decay with the characteristic rate of 7.

G(t) =
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2D plasma in magnetic field

Example

A charged particle, confined to move on a plane in a constant magnetic
field B, which is perpendicular to the plane of motion.

kT
r = w, i):iva—’yv—i— 2y—&(t),
m m

with ... the damping coefficient

T ... the absolute temperature

m ... mass of the particle

q ... charge of the particle

k... Boltzmann constant

Question: Determine the power spectrum of the velocity
components v, and v,.
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2D plasma in magnetic field
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