Stochastic Equations and Processes in physics and biology

Andrey Pototsky

Swinburne University

AMSI 2017

Lecture 4:

Stochastic differential equations

ACF of a real-valued signal x(t)

$$G(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt x(t) x(t+\tau),$$

Forward Fourier transform of x(t)

$$\hat{x}(\omega) = \int_0^T dt e^{-i\omega t} x(t).$$

Symmetry of $\hat{x}(\omega)$

$$\hat{x}(-\omega) = \hat{x}(\omega)^*$$

Proof of symmetry

$$\hat{x}(-\omega) = \int_0^T dt e^{i\omega t} x(t) = \left(\int_0^T dt e^{-i\omega t} x(t)\right)^* = \hat{x}(\omega)^*$$

Power spectral density $S(\omega)$ (psd)

$$S(\omega) = \lim_{T \to \infty} \frac{1}{2\pi T} |\hat{x}(\omega)|^2,$$

Wiener-Khinchin theorem

$$S(\omega) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} d\tau e^{-i\omega\tau} G(\tau)$$

Norbert Wiener

American mathematician (1894-1964) proved the theorem in 1930 for a deterministic process $\boldsymbol{x}(t)$

Aleksandr Yakovlevich Khinchin

Russian mathematician (1894-1959) proved the theorem in 1934 for a stochastic process $\boldsymbol{x}(t)$

Proof

$$S(\omega) = \lim_{T \to \infty} \frac{1}{2\pi T} \int_0^T dt e^{-i\omega t} x(t) \int_0^T dt' e^{i\omega t'} x^*(t')$$
$$= \{(t, t') \to (t', \tau = t - t')\}$$

Proof continued

$$S(\omega) = \lim_{T \to \infty} \frac{1}{2\pi T} \left[\int_0^T d\tau e^{-i\omega\tau} \int_0^{T-\tau} dt' x(t') x^*(t'+\tau) \right]$$

$$+ \int_{-T}^0 d\tau e^{-i\omega\tau} \int_{-\tau}^T dt' x(t') x^*(t'+\tau) \right]$$

$$= \frac{1}{2\pi T} \left[\int_{-T}^0 d\tau e^{-i\omega\tau} (TG(\tau) + O(1)) \right]$$

$$+ \int_0^T d\tau e^{-i\omega\tau} (TG(\tau) + O(1)) \right]$$

$$= \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^T d\tau e^{-i\omega\tau} G(\tau)$$

Using
$$G(-\tau) = G(\tau)$$

$$S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\tau) e^{\pm i\omega\tau} d\tau$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\tau) \cos \omega \tau d\tau$$
$$= \frac{1}{\pi} \int_{0}^{\infty} G(\tau) \cos \omega \tau d\tau$$

psd is an even function

$$S(-\omega) = S(\omega)$$

Delta function representation

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\pm i\omega x} d\omega,$$

ACF and psd

ACF is obtained as inverse Fourier transform of the psd.

$$G(\tau) = \int_{-\infty}^{\infty} e^{\pm i\omega \tau} S(\omega) d\omega.$$

psd is obtained as forward Fourier transform of the ACF.

$$S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\pm i\omega\tau} G(\tau) d\tau.$$

Stochastic vs deterministic processes

Deterministic signal x(t)

Fourier decomposition

Any deterministic signal $\boldsymbol{x}(t)$ can always be represented as a superposition of periodic functions

$$x(t) = A\cos\Omega t$$

Fourier transform $\hat{x}(\omega)$

$$\hat{x}(\omega) = \int_0^T dt e^{-i\omega t} A \cos \Omega t = \frac{A}{2} \int_0^T dt e^{-i\omega t} (e^{i\Omega t} + e^{-i\Omega t})$$

$$= \frac{A}{2} \begin{cases} \left(\frac{e^{it(\Omega - \omega)}}{i(\Omega - \omega)} - \frac{e^{-it(\Omega + \omega)}}{i(\Omega + \omega)} \right) \Big|_0^T, & \omega \neq \pm \Omega \end{cases}$$

$$= T \frac{A}{2} (\delta_{\omega,\Omega} + \delta_{\omega,-\Omega}) + O(T^0)$$

deterministic processes: psd

 $\operatorname{psd}\, S(\omega)$

$$S(\omega) = \lim_{T \to \infty} \frac{\hat{x}(\omega)\hat{x}^*(\omega)}{2\pi T} = \lim_{T \to \infty} \frac{1}{2\pi T} \left(T \frac{A}{2} (\delta_{\Omega,\omega} + \delta_{\omega,-\Omega}) + O(T^0) \right)^2$$

$$= \lim_{T \to \infty} \frac{A^2 T}{8\pi} (\delta_{\Omega,\omega} + \delta_{\omega,-\Omega})^2 + O(T^0) + O(T^{-1})$$

$$= \lim_{T \to \infty} \frac{A^2 T}{8\pi} (\delta_{\Omega,\omega}^2 + \delta_{\omega,-\Omega}^2) + O(T^0) + O(T^{-1})$$

Infinite power of a deterministic signal

$$\lim_{T\to\infty} S(\omega=\pm\Omega)\to\infty$$

deterministic processes: ACF

ACF $G(\tau)$

$$G(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt x(t) x(t+\tau) = \lim_{T \to \infty} \frac{A^2}{T} \int_0^T dt \cos \Omega t \cos \Omega (t+\tau)$$

$$= \lim_{T \to \infty} \frac{A^2}{T} \int_0^T dt \left(\cos^2 \Omega t \cos \Omega \tau - \sin \Omega t \cos \Omega t \sin \Omega \tau\right)$$

$$= \lim_{T \to \infty} \frac{A^2}{T} \int_0^T dt \left(\frac{1}{2} [1 + \cos 2\Omega t] \cos \Omega \tau - \frac{1}{2} \sin 2\Omega t \sin \Omega \tau\right)$$

$$= \frac{A^2 \cos \Omega \tau}{2} + O(1/T)$$

Infinite correlation time

ACF $G(\tau)$ of a deterministic signal does not vanish as $\tau \to \infty$.

deterministic processes: ACF and psd

Limit of large time window T

As $T \to \infty$, the Wiener-Khinchin theorem implies

$$S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega\tau} G(\tau) d\tau = \frac{A^2}{4\pi} \int_{-\infty}^{\infty} e^{-i\omega\tau} \cos \Omega \tau d\tau$$
$$= \frac{A^2}{8\pi} \int_{-\infty}^{\infty} e^{-i\omega\tau} \left(e^{i\Omega\tau} + e^{-i\Omega\tau} \right) d\tau$$
$$= \frac{A^2}{4} \left(\delta(\omega - \Omega) + \delta(\omega + \Omega) \right)$$

Only works for square-integrable functions

Stochastic porcess x(t)

Special case of a random telegraph process

$$x(t) = \pm 1, \quad \lambda = \mu$$

Recall stationary ACF $G(\tau)$

$$G(\tau) = \frac{(1 - (-1))^2 \mu^2}{(\mu + \mu)^2} \exp\left[-2\mu|\tau|\right] = e^{-2\mu|\tau|}$$

$G(\tau)$ is square-integrable on $(-\infty,\infty)$

Applying the Wiener-Khinchin theorem

Stochastic porcess x(t)

psd from the Wiener-Khinchin theorem

$$S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-2\mu|\tau|} e^{-i\omega\tau} d\tau$$

$$= \operatorname{Re} \left(2\frac{1}{2\pi} \int_{0}^{\infty} e^{-2\mu\tau} e^{-i\omega\tau} d\tau \right)$$

$$= \operatorname{Re} \left(\frac{1}{\pi} \frac{e^{-\tau(2\mu + i\omega)}}{-(2\mu + i\omega)} \Big|_{0}^{\infty} \right)$$

$$= \operatorname{Re} \left(\frac{1}{\pi} \frac{1}{(2\mu + i\omega)} \right)$$

$$= \frac{2\mu}{\pi(4\mu^{2} + \omega^{2})}$$

Stochastic vs deterministic processes

White noise

Stochastic process $\chi(t)$ with zero mean and zero correlation time

$$\langle \chi(t) \rangle = 0, \qquad \langle \chi(t)\chi(t') \rangle = \delta(t - t')$$

psd

$$S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\tau) e^{i\omega\tau} d\tau = \frac{1}{2\pi}$$

white noise

Equal power density for any frequency

Colored noise

Stochastic process $\eta(t)$ with any non-constant psd $S(\omega) \neq constant$

- Pink noise: $S(\omega) = \omega^{-1}$
- Brownian noise (red noise): $S(\omega) = \omega^{-2}$
- Blue noise: $S(\omega) = \begin{cases} \omega, & \omega \in [0, \omega_0] \\ 0, & \text{otherwise} \end{cases}$

Colored noise

Flavours of the noise

For each noise color one can define infinitely many different flavours, depending on the distribution of x at any given time.

Discretized signal

In practice, we descretize x(t) by choosing a time step Δt :

$$x(t_i), t_i = t_0 + i\Delta t, (i = 0, 1, 2, 3, ...)$$

White Gaussian noise

Generated by

$$x(t_i) \sim \frac{1}{\sqrt{\Delta t}} N(0, 1) = N\left(0, \frac{1}{\Delta t}\right)$$

Indeed

$$\langle x(t_i) \rangle = 0, \quad G(t_k - t_i) = \langle x(t_i)x(t_k) \rangle = \begin{cases} 0, & i \neq k \\ \frac{1}{\Delta t}, & i = k \end{cases}$$

Representation of the Dirac delta-function $\delta(t)$

$$\delta(t) = \left\{ \begin{array}{ll} 0, & t \neq 0 \\ \infty, & t = 0 \end{array} \right., \quad \int \delta(t) \, dt = 1$$

Uniform white noise

Generated by

$$x(t_i) \sim \sqrt{\frac{3}{\Delta t}} \operatorname{Uniform}([-1, 1])$$

Indeed

$$\langle x(t_i) \rangle = 0$$

$$G(t_k - t_i) = \langle x(t_i)x(t_k) \rangle = \begin{cases} 0, & i \neq k \\ \frac{1}{\Delta t}, & i = k \end{cases}$$

Gaussian and uniform white noise

The Wiener process

Stochastic process w(t) with conditional probability

$$\partial_t p(w, t|w_0, t_0) = \frac{1}{2} \partial_w^2 p(w, t|w_0, t_0).$$

Solution of the diffusion equation with D=1/2

$$p(w, t|w_0, t_0) = \frac{1}{\sqrt{2\pi(t - t_0)}} \exp\left(-\frac{(w - w_0)^2}{2(t - t_0)}\right).$$

Wiener process: independents of increments Δw_i

Markovian property

For any $t_i > t_{i-1}$, the increments $\Delta w_i = w(t_i) - w(t_{i-1})$ are independent with the distribution

$$p(\Delta w_i) = p(w_i, t_i | w_{i-1}, t_{i-1}) = \frac{1}{\sqrt{2\pi(t_i - t_{i-1})}} \exp\left(-\frac{(w_i - w_{i-1})^2}{2(t_i - t_{i-1})}\right)$$

$$\Delta w_i \sim N(0, (t_i - t_{i-1})) = N(0, \Delta t)$$

 $\langle (\Delta w_i)^2 \rangle = \Delta t = t_i - t_{i-1}$

Wiener process as a solution of stochastic differential equation

Derivative of the Wiener process

White Gaussian noise $\xi(t)$

$$\xi(t) = \frac{\Delta w}{\Delta t} \sim N\left(0, \frac{1}{\Delta t}\right) = \frac{1}{\sqrt{\Delta t}}N(0, 1)$$

Stochastic differential equation for w(t)

$$\frac{dw(t)}{dt} = \dot{w}(t) = \lim_{\Delta t \to 0} \frac{\Delta w}{\Delta t} = \xi(t)$$

Wiener process and Brownian motion

Brownian motion

The Wiener process w(t) is generated by

$$w(t_{i+1}) = w(t_i) + N(0,1)\sqrt{\Delta t}, \quad (i = 0, 1, 2, 3, ...).$$

Describes the coordinate of a Brownian particle with the diffusion coefficient D=1/2.

Computation of Power spectral density

Ensemble average of the square of Fourier transformed $\boldsymbol{x}(t)$

$$\langle \hat{x}(\omega)\hat{x}^*(\omega')\rangle = \int dt \, dt' e^{-i\omega t} e^{i\omega't'} \langle x(t)x(t')\rangle,$$

For a stationary process $\boldsymbol{x}(t)$

$$\langle x(t)x(t')\rangle = G(t-t'),$$

Connection with $S(\omega)$

$$\begin{split} \langle \hat{x}(\omega) \hat{x}^*(\omega') \rangle &= \int dt \, dt' e^{-i\omega t} e^{i\omega' t'} G(t-t') = \left\{ (t,t') \to (t',\tau=t-t') \right\} \\ &= \int dt' e^{i(\omega'-\omega)t'} \int d\tau e^{-i\omega' \tau} G(\tau) \\ &= 2\pi \int dt' e^{i(\omega'-\omega)t'} S(\omega') = (2\pi)^2 S(\omega') \delta(\omega-\omega'). \end{split}$$

psd of the Wiener process $dW/dt = \xi(t)$

In the Fourier space

$$i\omega \hat{x}(\omega) = \hat{\xi}(\omega),$$

Consequently

$$\langle \hat{x}(\omega)\hat{x}^*(\omega')\rangle = \frac{\langle \hat{\xi}(\omega)\hat{\xi}^*(\omega')\rangle}{(i\omega)(-i\omega')}$$

By the definition of the white noise

$$\langle \hat{\xi}(\omega)\hat{\xi}^*(\omega')\rangle = (2\pi)^2 \left(\frac{1}{2\pi} \int G_{\xi}(\tau) d\tau e^{-i\omega\tau}\right) \delta(\omega - \omega') = (2\pi)\delta(\omega - \omega'),$$

$$\langle \hat{x}(\omega)\hat{x}^*(\omega')\rangle = \frac{2\pi\delta(\omega-\omega')}{\omega^2} = (2\pi)^2 S(\omega)\delta(\omega-\omega')$$

 $S(\omega) = \left(\frac{1}{2\pi}\right)\frac{1}{\omega^2}.$

ACF of the Wiener process

Using the Wiener-Khinchin theorem

$$G(\tau) = \int_{-\infty}^{\infty} \frac{1}{2\pi\omega^2} e^{i\omega\tau} d\omega \sim \tau.$$

From ACF to psd

The backward Fourier transformation

$$S(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tau e^{-i\omega\tau} d\tau$$

does not exist, as the function $G(\tau) \sim \tau$ is not a square-integrable on the interval $(-\infty,\infty)$. Physically, it means that the Wiener process is not a stationary process.

Ornstein-Uhlenbeck process

Stochastic ODE for x(t)

$$\dot{x}(t) = -\frac{x}{\tau} + \frac{1}{\tau}\sqrt{2D}\xi(t),$$

with $\xi(t)$... white noise D... strength parameter τ ... correlation time

$$D = 0.045, \tau = 1$$

Ornstein-Uhlenbeck process

Massive particle of mass M in a gas of molecules m

Momentum and energy conservation in a single elastic collision

$$\begin{split} M\frac{V^2}{2} + m\frac{v^2}{2} &= M\frac{U^2}{2} + m\frac{w^2}{2} \\ M\vec{V} + m\vec{v} &= M\vec{U} + m\vec{w} \end{split}$$

Ornstein-Uhlenbeck process

Change of the momentum of the massive particle

$$\Delta \vec{P} = M \vec{U} - M \vec{V} = -\frac{2m}{M+m} (M \vec{V}) + \frac{2M}{M+m} (m \vec{v}) \label{eq:deltaP}$$

Number of collisons within time interval δt

$$\delta t \ll 1$$
, $\left\| \frac{\delta P(t)}{P(t)} \right\| \ll 1$, $I_i(t, \delta t) = (1, 0)$

Total momentum change

$$\Delta \vec{P} = - \left(\sum_{i=1}^N \frac{2m}{M+m} I_i(t,\delta t) \right) \vec{P} + \left(\sum_{i=1}^N \frac{2M}{M+m} I_i(t,\delta t) \vec{p_i} \right)$$

Langevin equation

Large number of uncorrelated collision events within dt

$$\frac{d\vec{P}}{dt} = -\alpha(P)\vec{P} + \vec{\xi}(t)$$

Paul Langevin (1872-1946): French physicist

psd of the Ornstein-Uhlenbeck process

In the Fourier space

$$i\omega \hat{x}(\omega) = -\frac{\hat{x}(\omega)}{\tau} + \frac{\sqrt{2D}}{\tau}\hat{\xi}(\omega)$$

Solving for $\hat{x}(\omega)$

$$\hat{x}(\omega) = \frac{\sqrt{2D}}{\tau} \frac{\hat{\xi}(\omega)}{i\omega + 1/\tau}$$

Taking ensemble average

$$\langle \hat{x}(\omega)\hat{x}^*(\omega')\rangle = 4\pi D \frac{\delta(\omega - \omega')}{1 + \tau^2 \omega^2}.$$

Taking ensemble average

$$S(\omega) = \frac{D}{\pi} \frac{1}{1 + \tau^2 \omega^2}.$$

ACF of the Ornstein-Uhlenbeck process

Relation to random telegraph process

Note that the functional form of $S(\omega)$ is identical with the psd of a random telegraph process. Compare

$$S(\omega) = \frac{2\mu}{\pi(4\mu^2 + \omega^2)} \ vs \ S(\omega) = \frac{D}{\pi} \frac{1}{1 + \tau^2 \omega^2}$$

This implies that the ACF of the Orstein-Uhlenbeck process has the form

$$G(t) = \frac{D}{\tau} e^{-|t|/\tau}$$

ACF of the Ornstein-Uhlenbeck process

Check using the Wiener-Khinchin theorem

$$G(t) = \int_{-\infty}^{\infty} \frac{D}{\pi} \frac{e^{i\omega t}}{1 + \tau^2 \omega^2} d\omega$$

$$= \text{residual} \left(\frac{De^{i\omega t}}{\pi \tau^2 (\omega - i/\tau)(\omega + i/\tau)} \right) \Big|_{\omega = i\tau^{-1}}$$

$$= \frac{D}{\tau} e^{-t/\tau}, \quad (t \ge 0)$$

Correlation time

ACF decay with the characteristic rate of τ .

2D plasma in magnetic field

Example

A charged particle, confined to move on a plane in a constant magnetic field B, which is perpendicular to the plane of motion.

$$\dot{\boldsymbol{r}} = \boldsymbol{v}, \ \dot{\boldsymbol{v}} = \frac{q}{m} \boldsymbol{v} \times \boldsymbol{B} - \gamma \boldsymbol{v} + \sqrt{2\gamma \frac{kT}{m}} \boldsymbol{\xi}(t),$$

with $\gamma \dots$ the damping coefficient

 $T \dots$ the absolute temperature

 $m \dots$ mass of the particle

 $q \dots$ charge of the particle

k... Boltzmann constant

Question: Determine the power spectrum of the velocity components v_x and v_y .

2D plasma in magnetic field

