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Lecture 5:

Ito and Stratonovich calculus, the Fokker-Planck
equation
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Integration of stochastic equations

Kiyosi Itô (1915-2008) Japanese mathematician
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Integration of stochastic equations

Ruslan Leont’evich Stratonovich (1930-1997) Russian
mathematician
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Multiplicative noise

General stochastic equation

ẋ(t) = f(x(t)) + g(x(t))ξ(t), ξ(t) . . .white noise

Formal solution

x(T ) = x(t0) +

∫ T

t0

ẋ dt =

∫ T

t0

[f(x(t))dt+ g(x(t))ξ(t)dt]

=

∫ T

t0

[f(x(t))dt+ g(x(t))dw(t)]
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Stochastic itegration

For a Wiener process x(t) consider the integral

∫ T

0
x(t)dx(t)

Mean-square limit sense

A sequence of random variables Xn(ω) converges to X(ω) in the sense of
the mean-square limit, if

lim
n→∞

∫

dω p(ω)[Xn(ω)−X(ω)]2 = 0

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics and biology AMSI 2017 6 / 45



Ito interpretation

Riemann sum

I = 〈 lim
N→∞

∑

i=0,N−1

x(ti)[x(ti+1)− x(ti)]〉mean−square
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Stratonovich interpretation

Riemann sum

S = 〈 lim
N→∞

∑

i=0,N−1

1

2
(x(ti) + x(ti+1))[x(ti+1)− x(ti)]〉mean−square

-2

-1

0

1

x(
t)

t
1 t

2 t
3

t
4 t

5

Stratonovich integration

t
0

(x(t
3
)+x(t

4
))/2

T

Mean-square limit of the Stratonovich sum

S =
1

2
[x(T )2 − x(t0)

2]

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics and biology AMSI 2017 8 / 45



Integration of Ito sde

Consider a general Ito stochastic equation

(I) dx = f(x)dt+ g(x)dw(t), (w(t) . . . Wiener process)

Forward Euler’s method

According to the definition of the Ito interpretation, the process xi = x(ti)
is generated by the forward Euler’s method:

xi+1 = xi +∆tf(xi) + g(xi)∆wi, (i = 0, 1, 2, 3, . . . )

∆wi =
√
∆tN(0, 1)
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Integration of Stratonovich sde

Consider a Stratonovich stochastic equation

(S) dx = g(x)dw(t), (w(t) . . . Wiener process)

For simplicity we set f(x) = 0
According to the definition of the Stratonovich interpretation

xi+1 = xi + g

(

xi+1 + xi
2

)

∆wi,

∆wi = N(0, 1)
√
∆t.

Implicit scheme

Note that this scheme is implicit, as one needs to solve for xi+1
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Integration of Stratonovich sde

Note that
xi+1 + xi

2
= xi +

xi+1 − xi
2

Taylor expansion, assuming small ∆x = xi+1 − xi

xi+1 = xi +

[

g(xi) + g′(xi)
∆x

2

]

∆wi

Solving for xi+1

xi+1 =
[

xi + g(xi)∆wi − g′(xi)
xi
2
∆wi

]

(

1− g′(xi)

2
∆wi

)

−1
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Integration of Stratonovich sde

To the order of ∆t and ∆wi ∼
√
∆t

xi+1 =
[

xi + g(xi)∆wi − g′(xi)
xi
2
∆wi

]

(

1 +
g′(xi)

2
∆wi

)

=

[

xi + g(xi)∆wi +
1

2
g(xi)g

′(xi)(∆wi)
2

]

+O(dt∆wi).

Because 〈(∆wi)
2〉 = ∆t

xi+1 = xi + g(xi)∆wi +
1

2
g(xi)g

′(xi)∆t
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Equivalence of Ito and Stratonovich sde

Spurious drift term

Stratonovich sde

(S) dx = f(x)dt+ g(x)dw(t)

is equivalent to an Ito sde

(I) dx = f(x)dt+
1

2
g(x)∂xg(x)dt+ g(x)dw(t),
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Change of variables: the Ito formula

Consider a general Ito stochastic equation

(I) dx = f(x)dt+ g(x)dw(t), (w(t) . . . Wiener process)

Forward Euler’s method

xi+1 = xi +∆tf(xi) + g(xi)∆wi, (i = 0, 1, 2, 3, . . . )

∆wi =
√
∆tN(0, 1)

What is the corresponding equation for F (x(t)) ?
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Change of variables: the Ito formula

Differentiation chain rule (works in Ito interpretation only!)

dF [x(t)] = F [x(t) + dx(t)]− F [x(t)]

= F ′[x(t)]dx(t) +
1

2
F ′′[x(t)]dx(t)2 + . . .

= F ′[x(t)] {f(x)dt+ g(x)dw(t)}

+
1

2
F ′′[x(t)] {f(x)dt+ g(x)dw(t)}2 .

To the order of dw(t) ∼
√
dt and dt

dF [x(t)] =

{

f(x)F ′[x] +
1

2
g(x)2F ′′[x]

}

dt+ g(x)F ′[x]dw(t).
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Change of variables in Stratonovich interpretation

Stratonovich sde

(S) dx = f(x)dt+ g(x)dw(t)

Chain rule for depterministic functions

(S) dF (x(t)) = F ′(x(t))dx = F ′(x(t))(f(x)dt+ g(x)dw)
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Heun’s method for Stratonovich sde

Example

Show that a Stratonovich sde

(S) dw = f(x)dt+ g(x)dw(t)

can be integrated using Heun’s method:

yi = xi + f(xi)∆t+ g(xi)∆wi,

xi+1 = xi +
1

2
(f(xi) + f(yi))∆t+

1

2
(g(xi) + g(yi))∆wi,

∆wi = N(0, 1)
√
∆t
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Connection between the Fokker-Planck equation
and a stochastic sde

For an Ito sde
(I) dx = f(x) + g(x)dw

Using Ito’s change of variables formulae

〈dF (x(t))〉

= 〈F ′[x(t)] {f(x)dt+ g(x)dw(t)}+ 1

2
F ′′[x(t)] {f(x)dt+ g(x)dw(t)}2〉

Using

〈dw(t)〉 = 0, 〈g(x(t))F ′(x(t))dw(t)〉 = 0

〈dF (x(t))〉 = 〈f(x)F ′(x) +
1

2
g2(x)F ′′(x)〉 dt,
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Connection between the Fokker-Planck equation
and a stochastic sde

In terms of the distribution function p(x, t|x0, t0)

〈dF (x(t))〉
dt

= 〈dF (x(t))

dt
〉 = d

dt
〈F (x(t))〉

=

∫

dxF (x)∂tp =

∫

dx

[

f(x)∂xF +
1

2
g(x)2∂2

xF

]

p

Integration by parts

∫

dxF (x)∂tp =

∫

dxF (x)

[

−∂x(f(x)p) +
1

2
∂2
x(g(x)

2p)

]

.
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Connection between the Fokker-Planck equation
and a stochastic sde

The Fokker-Planck equation for the distribution p(x, t|x0, t0)

0 = ∂tp+ ∂xJ(x)

J(x) = f(x)p− 1

2
∂x(g(x)

2p)

J(x) . . . the probability current
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The Fokker-Planck equation for a Stratonovich sde

For a Stratonovich sde

(S) dx = f(x)dt+ g(x)dw

The Fokker-Planck equation

∂tp+ ∂x

[

f(x)p+
1

2
g(x)g′(x)p− 1

2
∂x(g(x)

2p)

]

= 0

∂tp+ ∂x

[

f(x)p− 1

2
g(x)∂x(g(x)p)

]

= 0
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Fokker-Planck equation for a system of coupled SDEs

Set of n coupled equations

ẋi = fi(x1, x2, . . . , xn) +

n
∑

j=1

gij(x1, x2, . . . , xn)ξj(t), (i = 1, 2, . . . , n),

where ξk(t) represent sources of uncorrelated white Gaussian noise.
In Stratonovich interpretation

∂tp = −∂i(fip) +
1

2
∂i (gim∂kgkmp) .

(sum over repeated indices)
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Diffusion coefficient of a classical Brownian particle

One-dimensional motion of a particle m in a gas

ẋ =
p

m

ṗ = −αp+
√
2Dξ(t),

Parameters α . . . damping coefficient
D . . . characteristic strength of fluctuations
The Fokker-Planck equation

∂tρ(x, p, t) = −∂x

( p

m
ρ
)

+ ∂p[αpρ+D∂pρ]

∂tρ(x, p, t) + ∂xJx + ∂pJp = 0

Probability current J = (Jx, Jp)
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Diffusion coefficient of a classical Brownian particle

Stationary distribution

∂tρ = 0 ⇒ Jp = 0, Jx = f(p)

ρs =

√

α

2πD
exp

(

−αp2

2D

)

.

Spatially homogeneous distribution

Note that ρs(p) does not depend on x. Distribution density can only be
normalized on a finite interval X:

∫

X

dx

∫

∞

−∞

ρs(p) dp = 1.

In what follows we set X = 1.
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Diffusion coefficient of a classical Brownian particle

Maxwell’s velocity distribution at temperature T

ρs(v) =

√

m

2πkT
exp

(

−mv2

2kT

)

Einstein’s condition

D = αmkT.

Albert Einstein (1879-1955)

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics and biology AMSI 2017 25 / 45



Diffusion coefficient of a classical Brownian particle

Diffusion coefficient in 1D

D∞ = lim
t→∞

〈(x(t)− x(0))2〉
2t

= lim
t→∞

〈x(t)2〉 − 2x(0)〈x(t)〉+ x(0)2

2t
.

We need to derive and solve the equations for time-dependent
moments

〈x(t)〉 and 〈x(t)2〉
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Diffusion coefficient of a classical Brownian particle

Taking the ensemble average of the Langevin equation

∂t〈x(t)〉 = 〈ẋ〉 = 〈p〉
m

∂t〈p(t)〉 = 〈ṗ〉 = −α〈p〉+
√
2D〈ξ(t)〉 = −α〈p〉

Note that

〈ξ(t)〉 = 0
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Diffusion coefficient of a classical Brownian particle

Ensemble average 〈x(t)2〉

∂t〈x(t)2〉 = 2〈x(t)ẋ(t)〉 = 2
〈x(t)p(t)〉

m

Ensemble average 〈x(t)p(t)〉

∂t〈x(t)p(t)〉 = 〈x(t)ṗ(t)〉+ 〈ẋ(t)p(t)〉
= 〈x(t)[−αp(t) +

√
2Dξ(t)]〉+ 〈[p(t)/m]p(t)〉

= −α〈x(t)p(t)〉+ 〈p(t)2〉/m

Note that 〈x(t)ξ(t)〉 = 0
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Diffusion coefficient of a classical Brownian particle

Ensemble average 〈p(t)2〉

∂t〈p(t)2〉 = 2〈p(t)ṗ(t)〉
= 2〈[−αp(t)2 +

√
2Dp(t)ξ(t)]〉

Momentum and noise are correlated

〈p(t)ξ(t)〉 6= 0
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Diffusion coefficient of a classical Brownian particle

Marginal distribution of the momentum Π =
∫

X
ρ(x, p, t|x0, p0, t0) dx

∂tΠ = −
∫

X

dx [∂xJx + ∂pJp] = ∂p(αpΠ+D∂pΠ)

Ensemble average 〈p(t)2〉

∂t〈p(t)2〉 =

∫

p2∂tΠ(p, t) dp =

∫

dpp2∂p(αpΠ+D∂pΠ)

= −
∫

dp2αp2Π− 2D

∫

dp p ∂pΠ

= −2α〈p(t)2〉+ 2D

∫

dpΠ = −2α〈p(t)2〉+ 2D
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Diffusion coefficient of a classical Brownian particle

Correlation between momentum and noise

〈p(t)ξ(t)〉 =
√

D

2
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Diffusion coefficient of a classical Brownian particle

Solution with initial conditions x(t = t0) = x0 and p(t = t0) = p0

〈p(t)〉 = p0e
−α(t−t0)

〈p(t)2〉 =
D

α

(

1− e−2α(t−t0)
)

+ p20e
−2α(t−t0)

〈x(t)〉 = x0 +
p0
αm

(

1− e−α(t−t0)
)

〈x(t)p(t)〉 =
D

α2m
−
(

p20
αm

− D

α2m

)

e−2α(t−t0)

+

(

(xp)0 −
2D

α2m
+

p20
αm

)

e−α(t−t0)

〈x(t)2〉 =
2Dt

(αm)2
+ C1e

−α(t−t0) + C2e
−2α(t−t0).
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Diffusion coefficient of a classical Brownian particle

In the limit t → ∞

D∞ =
D

(αm)2
=

kT

αm

Particle mobility and Einstein’s relation

Mobility of a particle

µ =
velocity

force
= (αm)−1

D∞ =
D

(αm)2
=

kT

αm
= µkT.
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Overdamped motion

Brownian particle in the limit of large friction

ẋ = µ× force + noise = −µ∂xU(x) +
√
2Aξ(t)

U(x) . . . potential energy

µ . . . mobility

Fokker-Planck equation

∂ρ+ ∂x[−µ∂U(x)ρ−A∂xρ] = 0

Stationary zero current solution

ρs(x) = C exp

(−µU(x)

A

)

, C =

(
∫

∞

−∞

dx exp

(−µU(x)

A

))

−1

Andrey Pototsky (Swinburne University) Stochastic Equations and Processes in physics and biology AMSI 2017 34 / 45



Overdamped motion

Equilibrium Boltzmann distribution

ρs ∼ exp

(−U(x)

kT

)

This implies
A = µkT
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Special case: the barometric formula

Overdamped particle in the gravity field

U(x) = mgz, ⇒ ρs(z) ∼ exp

(−mgz

kT

)

Pressure P of an ideal gas

P =
ρRT

M

M . . . Molar weight
R . . . gas constant
ρ . . . density
Barometric formulae

P = P0 exp

(−Mgz

RT

)
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Bipolar molecule in external electric field

x y
E

+Q -Q

Coordinates of the two heads of the dimer x and y

ẋ = µ[−α(x− y) +QE] +
√

2µkTξx(t),

ẏ = µ[−α(y − x)−QE] +
√

2µkTξy(t)

Q . . . electric charge
E . . . electric field
µ . . . mobility of a single head
α . . . spring constant (Hooke’s law U = α(x− y)2/2)
ξx(t), ξy(t) . . . independent sources of white Gaussian noise
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Bipolar molecule in external electric field

Transformation to new variables
U = x+y

2 . . . center of mass coordinate
V = x− y . . . (±) the diameter of the dimer
Langevin equations for U and V

U̇ =
√

2µkT
ξx(t) + ξy(t)

2
,

V̇ = −2µαV + 2µQE +
√

2µkT (ξx(t)− ξy(t))
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Bipolar molecule in external electric field

Sum of two Gaussian white noise terms

Linear combination of two independent Gaussian white noise terms is also
a Gaussian white noise with modified variance

ξx(t) + ξy(t) = η(t)

ξx(t)− ξy(t) = χ(t),

with

〈η(t)η(t′)〉 = 〈(ξx(t) + ξy(t))(ξx(t
′) + ξy(t

′))〉 = 2δ(t− t′)

〈χ(t)χ(t′)〉 = 〈(ξx(t)− ξy(t))(ξx(t
′)− ξy(t

′))〉 = 2δ(t− t′)
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Bipolar molecule in external electric field

Langevin equations for U and V

U̇ =
√

µkTξU (t),

V̇ = −2µαV + 2µQE +
√

4µkTξV (t),

with two independent Wiener processes

dwU = ξU (t)dt, dwV = ξV (t)dt

Relation to Ornstein-Uhlenbeck process

Equation for V is reduced to the Ornstein-Uhlenbeck process by the
change of variables

V̂ = V − QE

α
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Bipolar molecule in external electric field

Dimer diffusion coefficient

D = lim
U→∞

〈(U − U0)
2〉

2t
=

µkT

2

Example

Show that the diffusion coefficient of a centre of mass of N overdamped
identical particles is

D =
µkT

N
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Bipolar molecule in external electric field

Langevin equation for V̂

˙̂
V = −2µαV̂ +

√

4µkTξV (t)

Recall the stationary zero current solution for the
Orstein-Uhlenbeck process

ρs(V̂ ) =

√

α

2πkT
exp

(

−αV̂ 2

2kT

)
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Bipolar molecule in external electric field

Average dipole moment

Q〈V 〉 = Q2E

α

Average size (diameter) of the dimer

s =
√

〈(V − 〈V 〉)2〉 =
√

〈V̂ 2〉

=

√

α

2πkT

∫

∞

−∞

dV̂ V̂ 2 exp

(

−αV̂ 2

2kT

)

=
kT

α
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Active Brownian particle

0
y

xα

v

Motion in 2D

ẋ = v0 cosα+
√

2µkTξx(t),

ẏ = v0 sinα+
√

2µkTξy(t),

α̇ =
√

2Drη(t)
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Active Brownian particle

Motion in 3D

ṙ = v0(z)p+ ξ(t), ṗ = η(t)× p,

with three-dimensional rotational noise

η(t) = (ηx(t), ηy(t), ηz(t)).

Fokker-Planck equation in the Stratonovich interpretation

∂tρ = DR
2ρ,

with
R = p×∇p = (px, py, pz)× (∂px , ∂py , ∂pz)

(M. Enculescu and H. Stark, Active Colloidal Suspensions Exhibit Polar Order

under Gravity, Phys. Rev. Lett. 107, 058301 (2011))
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