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(1) OVERVIEW AND INTRODUCTORY COMMENTS

Cartan-Killing classification of finite dimensional simple Lie algebras:

Classical types:
An, n ≥ 1 : sln+1

Bn, n ≥ 1 : so2n+1

Cn, n ≥ 1 : sp2n

Dn, n ≥ 3 : so2n

exceptional types:
e6, e7, e8, f4, g2

corresponding to Lie groups
SLn+1(C), SO2n+1(C), Sp2n(C), SO2n(C)

E6, E7, E8, F4, G2.

Most of the group constructions, particularly the exceptional ones,
are type dependent.



THE ROLE OF CHEVALLEY GROUPS

By 1950, a unified method for constructing simple Lie groups was
still missing.

The subject was clarified by the introduction of the theory of algebraic
groups, and the work of Chevalley in 1955, which gave an alternate
construction of the simple algebraic groups as automorphisms Aut(g)
of the underlying Lie algebra or a representation space.

This approach uses external data but has significant advantages,
leading to:

− A unified description of groups over arbitrary fields and over Z.
− Explicit determination of structure constants.
− Generators and defining relations for the Chevalley group.

Our objective will be to study Chevalley’s construction and apply it
to the infinite dimensional case: namely to associate Chevalley-type
groups to infinite dimensional Lie algebras known as Kac–Moody
algebras.



SOME FUNDAMENTAL QUESTIONS

The finite dimensional classical groups

SLn+1(C), SO2n+1(C), Sp2n(C), SO2n(C)

are naturally defined in terms of matrices.

How do we define the exceptional groups E6,E7,E8,F4,G2?

There are different forms and type-dependent constructions.

How do we define Lie groups over Z?

The classical groups can be described as groups of matrices with Z-entries.

For exceptional Lie groups and infinite dimensional Kac–Moody
groups, another method is required to define these groups over Z.



STRUCTURE CONSTANTS
Let g be a Lie algebra or Kac–Moody algebra. As a vector space g
over C with a bilinear operation

g× g→ g

(x, y) 7→ [x, y]

the structure constants of g are the constants that occur in the
evaluation of the Lie bracket in terms of a choice of basis for g. If g
has basis {xi}i=1,... and Lie bracket [·, ·] defined by

[xi, xj] =
∑

k

nijkxk.

The elements nijk ∈ C are the structure constants of g and they depend
on the choice of basis for g.

How do we determine the nijk ∈ C? Chevalley answered this question
in terms of the roots of the Lie algebra, but only up to a sign (±1).

We will discuss recent work on determining the signs of structure constants
for Kac–Moody algebras.



OUR APPROACH
We will study Chevalley’s theory, giving a unified construction of
classical and exceptional groups, and their structure constants, over
arbitrary fields, and also over Z.

This will extend to a general construction of infinite dimensional
Kac–Moody groups as Chevalley groups.

These are groups associated to infinite dimensional Kac–Moody
algebras which are the most natural extension to infinite dimensions
of finite dimensional simple Lie algebras.

We start with a definition of Lie algebras that includes both the finite
dimensional and the infinite dimensional case.



(2) LIE ALGEBRAS: FINITE AND INFINITE

DIMENSIONAL

The data needed to construct a Lie algebra includes the following.

Let A = (aij)i,j∈I be a generalized Cartan matrix. The entries of A satisfy
the conditions
aij ∈ Z, i, j ∈ I,
aii = 2, i ∈ I,
aij ≤ 0 if i 6= j, and
aij = 0 ⇐⇒ aji = 0. We will assume throughout that A is

symmetrizable: there exist positive rational numbers q1, . . . , q`, such
that the matrix DA is symmetric, where D = diag(q1, . . . , q`).

For example, the Cartan matrix for G2 can be decomposed:(
2 −1
−3 2

)
=

(
1/3 0

0 1

)(
6 −3
−3 2

)
.

The diagonal entries give the relative lengths of the simple roots.



LIE ALGEBRAS: FINITE AND INFINITE DIMENSIONAL
Let A = (aij)i,j∈I be a generalized Cartan matrix.

We say that A is of finite type if A is positive definite. In this case,
det(A) > 0.

We say that A is of affine type if A is positive-semidefinite, but not
positive-definite. In this case, det(A) = 0.

If A is not of finite or affine type, we say that A has indefinite type. In
this case, det(A) < 0.

These are 3 mutually exclusive cases.

Among the indefinite types, we are interested in the case that A is of
hyperbolic type: that is, A is neither of finite nor affine type, but every
proper, indecomposable submatrix is either of finite or of affine type.

A =

 2 −2 0
−2 2 −1

0 −1 2

 =

A(1)
1

... 0
. . . . . . . . .

0
... A2





EXAMPLES: GENERALIZED CARTAN MATRICES
The possible generalized Cartan matrices have been classified
([K], Ch4). Here is the classification in rank 2:
Rank 2 finite type: det(A) > 0

A1 × A1 =

(
2 0
0 2

)
, A2 =

(
2 −1
−1 2

)
B2 =

(
2 −1
−2 2

)
, G2 =

(
2 −1
−3 2

)
Rank 2 affine Kac–Moody type: det(A) = 0

A(1)
1 =

(
2 −2
−2 2

)
, A(2)

2 =

(
2 −1
−4 2

)
,

Rank 2 hyperbolic Kac–Moody type: det(A) < 0

H(m) =

(
2 −m
−m 2

)
m∈Z≥3

, H(a, b) =

(
2 −a
−b 2

)
ab>4



THE DYNKIN DIAGRAM OF A GENERALIZED CARTAN

MATRIX
The Dynkin diagram D of a generalized Cartan matrix A = (aij) is the
graph with one node for each row (or column) of A.
If i 6= j and aijaji ≤ 4 then we connect i and j with max (|aij|, |aji|) edges
together with an arrow towards i if |aij| > 1.
If aijaji > 4 we draw a bold face line labeled with the ordered pair
(|aij|, |aji|).

The classification of Dynkin diagrams of finite type is well known
([Hu], Ch III).
The affine Dynkin diagrams have been classified ([K], Ch 4).
There are 238 hyperbolic Dynkin diagrams in ranks 3-10, 142 of
which are symmetrizable ([CCCMNNP]).

t t t t t t t t t
t

α1 α3

α2

α4 α5 α6 α7 α8 α9 α10



LIE ALGEBRAS: GENERATORS
Let 〈·, ·〉 : h∗ −→ h denote the natural nondegenerate bilinear pairing
between a vector space h and its dual.

Given

− a generalized Cartan matrix A = (aij)i,j∈I, I = {1, . . . , `},
− a finite dimensional vector space h (Cartan subalgebra) with
dim(h) = 2`− rank(A),
− a choice of simple roots Π and simple coroots Π∨

Π = {α1, . . . , α`} ⊆ h∗, Π∨ = {α∨1 , . . . , α∨` } ⊆ h

such that Π and Π∨ are linearly independent and such that

〈αj, α
∨
i 〉 = αj(α

∨
i ) = aij,

i ∈ I, we may associate a Lie algebra g = g(A) over C, with
generators

h, (ei)i∈I, (fi)i∈I.



LIE ALGEBRAS: GENERATORS AND DEFINING

RELATIONS

The Lie algebra g = g(A) over C generated by

h, (ei)i∈I, (fi)i∈I.

is subject to defining relations ([Hu], Ch IV, [K], Ch 9, [M]):

[h, h] = 0,
[h, ei] = 〈αi, h〉ei, h ∈ h,
[h, fi] = −〈αi, h〉fi, h ∈ h,
[ei, fi] = α∨i ,
[ei, fj] = 0, i 6= j,
(ad ei)

−aij+1(ej) = 0, i 6= j,
(ad fi)−aij+1(fj) = 0, i 6= j, where (ad(x))(y) = [x, y].

The last two relations, due to Serre, restrict the growth of
commutators.
The algebra g = g(A) is infinite dimensional if A is not positive
definite.



THE SERRE RELATIONS

The relations

(ad ei)
−aij+1(ej) = 0, i 6= j,

(ad fi)−aij+1(fj) = 0, i 6= j,

where (ad(x))(y) = [x, y], are known as the Serre relations.

For example, if A =
( 2 −2
−2 2

)
, the Serre relations give

[e1, [e1, [e1, e2]]] = 0, but [e1, [e1, e2]] 6= 0.

Here the nonzero double commutator causes g(A) to be infinite
dimensional.

If A =
( 2 −3
−3 2

)
, the Serre relations give

[e1[e1, [e1, [e1, e2]]]] = 0, but [e1[e1, [e1, e2]]] 6= 0,

which leads to exponential growth of the nonzero commutators.



EXAMPLE: THE LIE ALGEBRA sl2(C)
Let A be the Cartan matrix A = (2). Let h be a 1 dimensional vector
space. Choose

α ∈ h∗ and α∨ ∈ h
such that

〈α, α∨〉 = α(α∨) = 2.

We may associate a Lie algebra g over C, generated by symbols

h, e, f

such that
[h, h] = 0, [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .

The Cartan subalgebra h acts on g by the automorphism
adh : g→ g

x 7→ [h, x]

for h ∈ h and this action yields the decomposition

g = Ce⊕ Ch⊕ Cf .



EXAMPLE: THE LIE ALGEBRA sl2(C)

The 3–dimensional Lie algebra g can be realized by choosing

h = Ch ∼=
{(

t 0
0 −t

)
| t ∈ C

}
,

α ∈ h∗ such that α∨ =

(
1 0
0 −1

)
and generators

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

Then
g ∼= sl2(C),

the Lie algebra of 2×2 matrices of trace 0 over C.



LIE ALGEBRAS: GENERAL CONSTRUCTION

In general, the Lie algebra g = g(A) decomposes into a direct sum of
root spaces ([K], Theorem 1.2)

g = n− ⊕ h ⊕ n+

under the simultaneous adjoint action of h, where
n+ =

⊕
α∈∆+

gα, n− =
⊕

α∈∆−
gα.

The roots ∆ := ∆+ t∆− ⊂ h∗ are the eigenvalues, and the root
spaces

gα = {x ∈ g | [h, x] = α(h)x, h ∈ h}
are the corresponding eigenspaces, satisfying dim(gα) <∞.
If g = g(A) is finite dimensional, then dim(gα) = 1 for each root α.
If A is symmetrizable, the algebra g admits a well-defined
non-degenerate symmetric bilinear form (· | ·) which plays the role of
‘squared length’ of a root when restricted to h∗ ([K], Theorem 2.2) and
corresponds to the Killing form in finite dimensions ([Hu], Ch II).



ROOT SYSTEMS AND WEYL GROUP

For each simple root αi, i ∈ I, we define the simple root
reflection

wi(αj) = αj − αj(α
∨
i )αi = αj − aijαi.

It follows that wi(αi) = −αi. The wi generate a subgroup
W = W(A) ⊆ Aut(h∗),

called the Weyl group of A, and (· | ·) |h∗ is W-invariant.
A root α ∈ ∆ is called a real root if there exists w ∈W such that
wα is a simple root. Otherwise α is called imaginary.
We denote by ∆re the real roots, ∆im the imaginary roots.
It follows that ∆re = WΠ. The group W acts on ∆re and ∆im.
If A has finite type, then |∆| <∞, ∆ = ∆re and ∆im = ∅.
Otherwise |∆| =∞, |∆re| =∞, |∆im| =∞.
If α ∈ ∆re, then dim(gα) = 1, otherwise dim(gα) ≥ 1 and dim(gα)
grows exponentially if g is hyperbolic.



RANK 2 FINITE ROOT SYSTEMS
1. A1 × A1 =

(
2 0
0 2

)

2. A2 =

(
2 −1

−1 2

)

3. B2 =

(
2 −1

−2 2

)

4. G2 =

(
2 −1

−3 2

)



ROOT SYSTEMS OF A(1)
1 AND H(3) IN hR

For both A(1)
1 =

(
2 −2
−2 2

)
and H(3) =

(
2 −3
−3 2

)
, we may take

hR = R1,1, where hC = hR ⊗R C.
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ROOT LATTICE AND WEIGHT LATTICE
The roots ∆ lie on a lattice in h∗ called the root lattice, denoted Q. We
have Q = Zα1 ⊕ · · · ⊕ Zα`, a free Z-module.

Every α ∈ ∆ has an expression in Q of the form

α =
∑̀
i=1

kiαi

where the ki are either all ≥ 0, in which case α is called positive, or all
≤ 0, in which case α is called negative.

The positive roots are denoted ∆+, the negative roots ∆−.

The weight lattice P in h∗ is:

P = {λ ∈ h∗ | 〈λ, α∨i 〉 ∈ Z, i = 1, . . . `}.

The dominant integral weights are

P+ = {λ ∈ h∗ | 〈λ, α∨i 〉 ∈ Z≥0, i = 1, . . . `}.



ROOT LATTICE AND WEIGHT LATTICE

The weight lattice P contains a basis of fundamental weights
{ω1, . . . , ω`} ⊂ h∗ such that

〈ωi, α
∨
j 〉 =

{
1, if i = j
0, i 6= j.

We write

P = {λ ∈ h∗ | 〈λ, α∨i 〉 ∈ Z, i = 1, . . . `} = Zω1 ⊕ · · · ⊕ Zω`.

Since 〈αj, α
∨
i 〉 = aij ∈ Z, i, j = 1, . . . `, we have αi ∈ P so roots are

weights and thus Q ≤ P.
The index of the root lattice Q as a subgroup of the weight lattice P is
finite and is given by |det(A)|where the generalized Cartan matrix A.



ROOT LATTICE AND WEIGHT LATTICE OF TYPE A2


	

