

(Kac–Moody) Chevalley groups and Lie algebras with built–in structure constants Lecture 2

Lisa Carbone, Rutgers University lisa.carbone@rutgers.edu

July 14, 2017

<ロト < 団ト < 臣ト < 臣ト = 臣 -

nac

TOPICS

- (1) Overview and introductory comments
- (2) Lie algebras: finite and infinite dimensional
- (3) Weights, representations and universal enveloping algebra
- (4) (Kac-Moody) Chevalley groups
- (5) Generators and relations and (Kac–Moody) Groups over $\mathbb Z$

(6) Structure constants for Kac–Moody algebras and Chevalley groups

Today we will use a class of representations of (Kac–Moody) Lie algebras to construct groups known as (Kac–Moody) Chevalley groups.

We will construct two forms of (Kac–Moody) Chevalley groups: the adjoint form using the adjoint representation and a simply connected form using a more general representation known as a highest weight module.

LAST TIME

Let $A = (a_{ij})_{i,j \in I}$ be a symmetrizable generalized Cartan matrix: $a_{ij} \in \mathbb{Z}, i, j \in I,$ $a_{ii} = 2, i \in I,$ $a_{ij} \leq 0$ if $i \neq j$, and $a_{ij} = 0 \iff a_{ji} = 0.$

Let h be a finite dimensional vector space (Cartan subalgebra).

Let $\langle \cdot, \cdot \rangle : \mathfrak{h}^* \longrightarrow \mathfrak{h}$ denote the natural nondegenerate bilinear pairing between \mathfrak{h} and its dual.

Let Π and Π^{\vee} be a choice of *simple roots* and *simple coroots*

 $\Pi = \{\alpha_1, \dots, \alpha_\ell\} \subseteq \mathfrak{h}^*, \ \Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_\ell^{\vee}\} \subseteq \mathfrak{h}$

such that Π and Π^{\vee} are linearly independent and such that

 $\langle \alpha_j, \alpha_i^{\vee} \rangle = \alpha_j(\alpha_i^{\vee}) = a_{ij}.$

We associate a Lie algebra $\mathfrak{g} = \mathfrak{g}(A)$ over \mathbb{C} , with generators

 $\mathfrak{h}, (e_i)_{i\in I}, (f_i)_{i\in I}.$

LIE ALGEBRAS: GENERATORS AND DEFINING RELATIONS

The Lie algebra $\mathfrak{g} = \mathfrak{g}(A)$ over \mathbb{C} generated by

 $\mathfrak{h}, (e_i)_{i\in I}, (f_i)_{i\in I}.$

is subject to defining relations ([Hu], Ch IV, [K], Ch 9, [M]):

$$\begin{split} [\mathfrak{h},\mathfrak{h}] &= 0, \\ [h,e_i] &= \langle \alpha_i,h \rangle e_i, h \in \mathfrak{h}, \\ [h,f_i] &= -\langle \alpha_i,h \rangle f_i, h \in \mathfrak{h}, \\ [e_i,f_i] &= \alpha_i^{\lor}, \\ [e_i,f_j] &= 0, \ i \neq j, \\ (ad\ e_i)^{-a_{ij}+1}(e_j) &= 0, \ i \neq j, \\ (ad\ f_i)^{-a_{ij}+1}(f_j) &= 0, \ i \neq j, \\ \end{split}$$

The algebra $\mathfrak{g} = \mathfrak{g}(A)$ is infinite dimensional if A is not positive definite and is called a *Kac–Moody algebra*.

LIE ALGEBRAS: GENERAL CONSTRUCTION

The algebra g decomposes into a direct sum of root spaces

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ under the simultaneous adjoint action of \mathfrak{h} , where

 $\mathfrak{n}_{+} = \bigoplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}, \ \mathfrak{n}_{-} = \bigoplus_{\alpha \in \Delta_{-}} \mathfrak{g}_{\alpha}.$ The roots $\Delta := \Delta_{+} \sqcup \Delta_{-} \subset \mathfrak{h}^{*}$ are the eigenvalues, and the root spaces

$$\mathfrak{g}_{lpha} \;=\; \{x\in \mathfrak{g} \mid [h,x]=lpha(h)x,\; h\in \mathfrak{h}\}$$

are the corresponding eigenspaces, satisfying $dim(\mathfrak{g}_{\alpha}) < \infty$. If $\mathfrak{g} = \mathfrak{g}(A)$ is finite dimensional, then $dim(\mathfrak{g}_{\alpha}) = 1$ for each root α . For each simple root α_i , $i \in I$, we define the simple root reflection

$$w_i(\alpha_j) = \alpha_j - \alpha_j(\alpha_i^{\vee})\alpha_i = \alpha_j - a_{ij}\alpha_i.$$

The w_i generate a subgroup

 $W = W(A) \subseteq Aut(\mathfrak{h}^*),$

called the Weyl group of A.

ROOT LATTICE AND WEIGHT LATTICE

The roots Δ of \mathfrak{g} lie on a lattice in \mathfrak{h}^* called the *root lattice*, denoted Q. We have $Q = \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_\ell$.

The weight lattice *P* in \mathfrak{h}^* is: $P = \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}, i = 1, \dots \ell\} = \mathbb{Z}\omega_1 \oplus \dots \oplus \mathbb{Z}\omega_\ell.$

The dominant integral weights are

 $P_+ = \{ \lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}, \ i = 1, \dots \ell \}.$

Since $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij} \in \mathbb{Z}$, $i, j = 1, ..., \ell$, we have $\alpha_i \in P$ so roots are weights and thus $Q \leq P$.

The index of the root lattice Q as a subgroup of the weight lattice P is finite and is given by |det(A)| where the generalized Cartan matrix A. For example, the fundamental weight of \mathfrak{sl}_2 is

$$\omega = A^{-1}\alpha = \frac{1}{2}\alpha$$

where A = (2).

(3) WEIGHTS, REPRESENTATIONS AND UNIVERSAL ENVELOPING ALGEBRA

Let g be a Lie algebra or Kac–Moody algebra.

Some of the weights $\omega \in P$ are related to the representations of \mathfrak{g} . Let *V* be a \mathfrak{g} -module with defining representation $\rho : \mathfrak{g} \to End(V)$. The *weight space* of *V* with weight $\mu \in P$ is

 $V_{\mu} = \{ v \in V \mid x \cdot v = \mu(x)v \text{ for all } x \in \mathfrak{h} \}.$

The set of weights of the representation V is

 $wts(V) = \{\mu \in P \mid V_{\mu} \neq 0\}.$

If $\mu_1, \mu_2, ..., \mu_n$ are weights of a representation *V*, then the lattice L_V generated by these weights is

 $L_V = \mathbb{Z}\mu_1 \oplus \mathbb{Z}\mu_2 \oplus \cdots \oplus \mathbb{Z}\mu_n = \{\sum_{i=1}^n a_i \mu_i \mid a_i \in \mathbb{Z}_{\geq 0}\}$ which is a subgroup of *P*.

INTEGRABLE REPRESENTATIONS

A \mathfrak{g} -module *V* is called *integrable* if it is diagonalizable, that is, *V* can be written as a direct sum of its weight spaces:

 $V = \bigoplus_{\lambda \in wts(V)} V_{\lambda}$

and if the e_i and f_i act *locally nilpotently* on *V*. That is, for each $v \in V$,

$$e_i^{n_i} \cdot v = f_i^{n_i} \cdot v = 0$$

for all $i \in I$ and for some $n_i > 0$.

If \mathfrak{g} is finite dimensional, then every finite dimensional representation V of \mathfrak{g} is integrable.

The adjoint representation of a Lie algebra or Kac-Moody algebra g

 $ad:\mathfrak{g}\to\mathfrak{gl}(\mathfrak{g})$

 $x \mapsto ad x$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

is integrable.

(KAC–MOODY) CHEVALLEY GROUPS OF ADJOINT TYPE

Let \mathfrak{g} be a simple Lie algebra or Kac–Moody algebra with generators e_i and f_i , $i \in I$. Let Δ be the root system of \mathfrak{g} . Let

 $ad:\mathfrak{g}\to\mathfrak{gl}(\mathfrak{g})$

 $x \mapsto ad x$

be the adjoint representation. Then

(ad x)(y) = [x, y].

Let $\alpha \in \Delta$. Let $s, t \in \mathbb{C}$ and set $exp(s \cdot ad(e_i)) = I + s \cdot ad(e_i) + \frac{s^2}{2} \cdot (ad(e_i))^2 + \dots$ $exp(t \cdot ad(f_i)) = I + t \cdot ad(f_i) + \frac{t^2}{2} \cdot (ad(f_i))^2 + \dots$

Since $ad(\mathfrak{g})$ is locally nilpotent, these are well defined elements of $GL(\mathfrak{g})$.

(KAC–MOODY) CHEVALLEY GROUPS OF ADJOINT TYPE

The (Kac-Moody) Chevalley group of adjoint type is defined as

 $G_{ad} = \langle exp(s \cdot ad(e_i)), exp(t \cdot ad(f_i)) \mid i \in I, \alpha \in \Delta, \ s, t \in \mathbb{C} \rangle < GL(\mathfrak{g}).$

The adjoint representation $ad : \mathfrak{g} \longrightarrow \mathfrak{gl}(\mathfrak{g})$ gives rise to a representation

 $Ad: G_{ad} \longrightarrow GL(\mathfrak{g})$

such that

exp(ad(x)) = Ad(exp(x))

for all $x \in \mathfrak{g}$. It is routine to verify that for all $g \in G$, $x \in \mathfrak{g}$,

 $exp(Ad g)(x)) = g exp(x) g^{-1}.$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

ADJOINT CHEVALLEY GROUP OF \mathfrak{sl}_2

For $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$, the matrices for $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ acting on the basis $\{e, f, h\}$ for $\mathfrak{sl}_2(\mathbb{C})$ are

$$ad \ e = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ ad \ f = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}, \ ad \ h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Now let $s, t \in \mathbb{C}$. Then

$$(s \cdot ad \ e)^3 = (t \cdot ad \ f)^3 = 0$$

 \mathbf{SO}

$$exp(s \cdot ad \ e) = Id + s \cdot ad \ e + \frac{1}{2}(s \cdot ad \ e)^2 = \begin{pmatrix} 1 & -2s & -s^2 \\ 0 & 1 & s \\ 0 & 0 & 1 \end{pmatrix},$$
$$exp(t \cdot ad \ f) = Id + t \cdot ad \ f + \frac{1}{2}(t \cdot ad \ f)^2 = \begin{pmatrix} 1 & 0 & 0 \\ -t & 1 & 0 \\ -t^2 & 2t & 1 \end{pmatrix}.$$

The adjoint group G_{ad} generated by $exp(s \cdot ad e)$ and $exp(t \cdot ad f)$ is isomorphic to (a 3-dimensional representation of) $PSL_2(\mathbb{C})$.

・ロト (四) (日) (日) (日) (日) (日)

HIGHEST WEIGHT MODULES

Let $\mathcal{U}(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . A \mathfrak{g} -module V is called a *highest weight module* with *highest weight* $\lambda \in \mathfrak{h}^*$ if there exists $0 \neq v_{\lambda} \in V$ called a *highest weight vector* such that

$$\mathfrak{n}^+ \cdot v_\lambda = 0,$$

$$h \cdot v_{\lambda} = \lambda(h) v_{\lambda}$$

for $h \in \mathfrak{h}$ and

 $V = \mathcal{U}(\mathfrak{g})(v_{\lambda}).$

Since n_+ annihilates v_{λ} and \mathfrak{h} acts as scalar multiplication on v_{λ} , we have

 $V = \mathcal{U}(\mathfrak{n}_{-})(v_{\lambda}).$

If V^{λ} is a highest weight module with highest weight λ , then all weights of V^{λ} have the form

$$\lambda - \sum_{i=1}^n a_i \alpha_i$$

where α_i are the simple roots and $a_i \in \mathbb{Z}_{\geq 0}$.

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 - のへで

EXISTENCE OF HIGHEST WEIGHT MODULES

Let \mathfrak{g} be a Lie algebra or Kac–Moody algebra. Then for all $\lambda \in \mathfrak{h}^*$, \mathfrak{g} has a highest weight module *V* with highest weight λ ([MP], Prop 2.3.1).

The highest weight vector $0 \neq v_{\lambda} \in V$ is unique up to nonzero scalar multiples kv_{λ} and the weight λ of v_{λ} is unique.

We have

$$V = \bigoplus_{\mu \in wts(V)} V_{\mu}, \quad dim(V_{\mu}) < \infty, \quad V_{\lambda} = \mathbb{C}v_{\lambda}.$$

Among all modules with highest weight $\lambda \in \mathfrak{h}^*$, there is a unique one that is irreducible as a \mathfrak{g} -module, that is, has no proper \mathfrak{g} -submodules except the trivial one ([K], Prop 9.3). We will often denote this by V^{λ} .

The module V^{λ} is integrable if and only if $\lambda \in P_+$, that is, λ is a dominant integral weight ([K], Lemma 10.1).

SUMMARY: HIGHEST WEIGHT MODULES

Let $\lambda \in \mathfrak{h}^*$ be a dominant integral weight. That is

 $\lambda \in P_+ = \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}, \ i = 1, \dots \ell \}.$

Then there is a unique irreducible highest weight \mathfrak{g} -module V^{λ} .

Since λ is dominant, V^{λ} is integrable.

For Kac–Moody algebras g, the adjoint representation is integrable but is not a highest weight module.

For simple Kac–Moody algebras \mathfrak{g} , all \mathfrak{g} –modules $\{0\} \neq V$ are faithful, since $K = ker(\mathfrak{g} \rightarrow End(V))$ is an ideal, hence $K = \{0\}$.

FAITHFUL \mathfrak{g} -MODULES V^{λ}

The following lemma holds for both Lie algebras and Kac–Moody algebras ${\mathfrak g}.$

Lemma. If V^{λ} is a faithful highest weight \mathfrak{g} -module with highest weight λ , then the lattice generated by the weights of V^{λ} contains the root lattice $Q = \mathbb{Z}\alpha_1 \oplus \ldots \mathbb{Z} \oplus \alpha_{\ell}$.

Proof: Since V^{λ} is faithful, no e_i or f_i acts trivially on V^{λ} . So there exists $\mu \in wts(V^{\lambda})$ such that e_i or f_i does not act trivially on V^{λ}_{μ} . We have

 $e_i: V^{\lambda}_{\mu} \to V^{\lambda}_{\mu+lpha_i}$ $f_i: V^{\lambda}_{\mu} \to V^{\lambda}_{\mu-lpha_i}$

so $\mu + \alpha_i$, $\mu - \alpha_i \in wts(V^{\lambda})$, and thus $\alpha_i \in wts(V^{\lambda})$. It follows that the lattice generated by the weights of V^{λ} contains the root lattice. \Box

Universal enveloping algebra $\mathcal{U}_{\mathbb{C}}(\mathfrak{g})$

Let $T(\mathfrak{g})$ denote the tensor algebra of \mathfrak{g} :

 $T(\mathfrak{g}) = \mathbb{C} \oplus \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \oplus (\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}) \oplus \cdots$

We may view elements of $T(\mathfrak{g})$ as formal noncommutative products, or 'power series' with \mathfrak{g} as the single variable. We define

 $\mathcal{U}_{\mathbb{C}}(\mathfrak{g}) = T(\mathfrak{g})/I$

where *I* is the two-sided ideal generated by elements of the form

 $a \otimes b - b \otimes a - [a, b] \in \mathfrak{g} \oplus (\mathfrak{g} \otimes \mathfrak{g}) \subset T(\mathfrak{g})$

Then $\mathcal{U}_{\mathbb{C}}(\mathfrak{g})$ is an associative algebra containing all possible polynomials in the e_i , f_i and $h \in \mathfrak{h}$ as well as all their products, subject to the natural relations in \mathfrak{g} .

$\mathbb{Z} ext{-form of }\mathcal{U}_{\mathbb{C}}(\mathfrak{g})$

Let $\mathcal{U}_{\mathbb{C}} = \mathcal{U}_{\mathbb{C}}(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . Choose a lattice Λ between Q and P, that is $Q \leq \Lambda \leq P$, such that there are maps $i \mapsto \alpha_i$ and $i \mapsto \alpha_i^{\vee}$ from I to Λ and its \mathbb{Z} -dual Λ^{\vee} where $a_{ij} = \langle \alpha_j, \alpha_i^{\vee} \rangle$, $a_{ij} \in A$ and A is the generalized Cartan matrix of \mathfrak{g} .

 $\mathcal{U}_\mathbb{Z} \subseteq \mathcal{U}_\mathbb{C}$ be the $\mathbb{Z}\text{-subalgebra generated by the elements}$

$$\frac{e_i^m}{m!}, \ \frac{f_i^m}{m!}, \ \binom{h}{m} = \frac{h(h-1)\dots(h-m+1)}{m!}$$

for $i \in I$, $h \in \Lambda^{\vee}$ and $m \ge 0$, $\mathcal{U}_{\mathbb{Z}}^{+}$ be the \mathbb{Z} -subalgebra generated by $\frac{e_{i}^{m}}{m!}$ for $i \in I$ and $m \ge 0$, $\mathcal{U}_{\mathbb{Z}}^{-}$ be the \mathbb{Z} -subalgebra generated by $\frac{f_{i}^{m}}{m!}$ for $i \in I$ and $m \ge 0$, $\mathcal{U}_{\mathbb{Z}}^{0} \subseteq \mathcal{U}_{\mathbb{C}}(\mathfrak{h})$ be the \mathbb{Z} -subalgebra generated by $\binom{h}{m}$, for $h \in \Lambda^{\vee}$ and $m \ge 0$.

A \mathbb{Z} -form of V^{λ}

Let \mathbb{K} be a field. Let V^{λ} be the unique integrable highest weight \mathfrak{g} -module corresponding to the dominant integral weight λ . We have

$$\mathcal{U}^+_{\mathbb{Z}} \cdot v_\lambda = \mathbb{Z} v_\lambda$$

since all elements of $\mathcal{U}_{\mathbb{Z}}^+$ except for 1 annihilate v_{λ} . Also

 $\mathcal{U}^0_{\mathbb{Z}} \cdot v_\lambda = \mathbb{Z} v_\lambda$

 $\mathcal{U}^0_{\mathbb{Z}}$ acts as scalar multiplication on v_{λ} by a \mathbb{Z} -valued scalar. Thus we have

$$\mathcal{U}_{\mathbb{Z}} \cdot v_{\lambda} = \mathcal{U}_{\mathbb{Z}}^{-} \cdot (\mathbb{Z}v_{\lambda}) = \mathcal{U}_{\mathbb{Z}}^{-} \cdot (v_{\lambda}).$$

We set

$$V^\lambda_\mathbb{Z} \ = \ \mathcal{U}_\mathbb{Z} \cdot v_\lambda \ = \ \mathcal{U}^-_\mathbb{Z} \cdot (v_\lambda)$$

Then $V_{\mathbb{Z}}^{\lambda}$ is a lattice in $V_{\mathbb{K}}^{\lambda} = \mathbb{K} \otimes_{\mathbb{Z}} V_{\mathbb{Z}}^{\lambda}$ and a $\mathcal{U}_{\mathbb{Z}}$ -module.

SIMPLY CONNECTED CHEVALLEY GROUPS: OVERVIEW

Chevalley constructed a \mathbb{Z} -form $\mathcal{U}_{\mathbb{Z}}$ of the universal enveloping algebra \mathcal{U} of a complex simple Lie algebra \mathfrak{g} . This is a subring $\mathcal{U}_{\mathbb{Z}}$ of $\mathcal{U}_{\mathbb{C}}$ such that the canonical map

 $\mathcal{U}_{\mathbb{Z}}\otimes \mathbb{C} \longrightarrow \mathcal{U}_{\mathbb{C}}$

is bijective. He then defined a \mathbb{Z} -form of \mathfrak{g} :

 $\mathfrak{g}_{\mathbb{Z}}=\mathfrak{g}_{\mathbb{C}}\cap\mathcal{U}_{\mathbb{Z}}.$

For \mathbb{K} an arbitrary field, we set

 $\begin{aligned} \mathcal{U}_{\mathbb{K}} &= \mathcal{U}_{\mathbb{Z}} \otimes \mathbb{K} \\ \mathfrak{g}_{\mathbb{K}} &= \mathfrak{g}_{\mathbb{Z}} \otimes \mathbb{K}. \end{aligned}$

Let V^{λ} be the irreducible highest weight module corresponding to a dominant integral weight λ .

A simply connected Chevalley group $G_{\mathbb{K}}$ is generated by elements of $Aut(V_{\mathbb{K}}^{\lambda})$, where $V_{\mathbb{K}}^{\lambda} = \mathbb{K} \otimes_{\mathbb{Z}} V_{\mathbb{Z}}^{\lambda}$ for a \mathbb{Z} -form $V_{\mathbb{Z}}^{\lambda}$.

We will extend this construction to infinite dimensions.

(4) (KAC-MOODY) CHEVALLEY GROUPS

Theorem([CL]) Let \mathfrak{g} be a symmetrizable Lie algebra or Kac–Moody algebra over \mathbb{C} . Let \mathbb{K} be an arbitrary field. Let α_i , $i \in I$, be the simple roots and e_i , f_i the generators of \mathfrak{g} . Let $V_{\mathbb{K}}^{\lambda}$ be a \mathbb{K} -form of an integrable highest weight module V^{λ} for \mathfrak{g} , corresponding to dominant integral weight λ and defining representation $\rho : \mathfrak{g} \to End(V_{\mathbb{K}}^{\lambda})$. For $s, t \in \mathbb{K}$, let

$$\chi_{\alpha_i}(s) = exp(\rho(se_i)), \ \chi_{-\alpha_i}(t) = exp(\rho(tf_i)).$$

Then

$$G^{V^{\lambda}}(\mathbb{K}) = \langle \chi_{\alpha_i}(s), \ \chi_{-\alpha_i}(t) \mid s, t \in \mathbb{K} \rangle \leq Aut(V_{\mathbb{K}}^{\lambda})$$

is a simply connected (Kac–Moody) Chevalley group corresponding to \mathfrak{g} .

This construction is a natural generalization of the theory of elementary Chevalley groups over fields and can be extended to commutative rings (as in [Ch], [St]).

A similar construction for $G^{V^{\lambda}}$ was used in [CG] to construct Kac–Moody groups over finite fields.

Simply connected Chevalley group corresponding to \mathfrak{sl}_2

We have

root lattice $Q = \mathbb{Z}\alpha$ and weight lattice $P = \mathbb{Z}\omega = \frac{1}{2}\mathbb{Z}\alpha$,

where α is the simple root. Thus $P/Q = \mathbb{Z}/2\mathbb{Z}$, hence the simply connected group is not isomorphic to the adjoint group.

Choose $\lambda = \omega$, where ω is the fundamental weight and let V^{ω} be the corresponding integrable highest weight module.

Let $\rho : \mathfrak{g} \to End(V^{\omega})$ be the defining representation of V^{ω} . Let v^{ω} be a highest weight vector and let $V^{\omega}_{\mathbb{Z}}$ be the orbit of v^{ω} under $\mathcal{U}_{\mathbb{Z}}$

$$V^{\omega}_{\mathbb{Z}} \;=\; \mathcal{U}_{\mathbb{Z}} \cdot v^{\omega} \;=\; \mathcal{U}^{-}_{\mathbb{Z}} \cdot v^{\omega}$$

where

$$\frac{(\rho(f))^n}{n!} \cdot v_{\omega} \in V_{\omega - n\alpha}, \ n \ge 0$$

where $V_{\omega-n\alpha}^{\omega}$ is the weight space of V^{ω} of weight $\omega - n\alpha$.

SIMPLY CONNECTED CHEVALLEY GROUP CORRESPONDING TO \mathfrak{sl}_2

Let \mathbb{K} be an arbitrary field. The simply connected group $G^{V^{\omega}}(\mathbb{K}) < End(V^{\omega})$ is the group $SL_2(\mathbb{K})$. That is,

$$G^{V^{\omega}}(\mathbb{K}) = \langle \chi_{\alpha}(s), \chi_{-\alpha}(t) \mid s, t \in \mathbb{K} \rangle$$

= $\langle exp(s\rho(e)), exp(t\rho(f)) \mid s, t \in \mathbb{K} \rangle$
= $\langle \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \mid s, t \in \mathbb{K} \rangle$
= $SL_{2}(\mathbb{K}).$

For a \mathbb{K} -form $\mathfrak{g}_{\mathbb{K}} = \mathfrak{g}_{\mathbb{Z}} \otimes \mathbb{K}$ of $\mathfrak{g}_{\mathbb{C}}$, the adjoint group is

 $G^{V^{\alpha}}(\mathbb{K}) \cong PSL_2(\mathbb{K}).$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

SUMMARY: SIMPLY CONNECTED (KAC–MOODY) CHEVALLEY GROUP

To construct a (Kac–Moody) Chevalley group, we will use the following data associated to a simple Lie algebra or Kac–Moody algebra g:

(i) a lattice Λ with $Q \leq \Lambda \leq P$, such that there are maps $i \mapsto \alpha_i$ and $i \mapsto \alpha_i^{\vee}$ from *I* to Λ and its \mathbb{Z} -dual Λ^{\vee} where $a_{ij} = \langle \alpha_j, \alpha_i^{\vee} \rangle$, $a_{ij} \in A$.

 $(ii) \quad \text{a dominant integral weight } \lambda \in P_+ \text{ and unique irreducible highest weight module } V^\lambda,$

(*iii*) $\mathcal{U}_{\mathbb{Z}}(\mathfrak{g})$, a \mathbb{Z} -form of $\mathcal{U}_{\mathbb{C}}(\mathfrak{g})$, that is, the \mathbb{Z} -subalgebra generated by

$$\frac{e_i^m}{m!}, \ \frac{f_i^m}{m!}, \ i \in I, \ \binom{h}{m}, \ h \in \Lambda^{\vee}, \ m \geq 0,$$

- ロ > - 4 日 > - 4 日 > - 4 日 > - 9 0 0

(*iv*) $V_{\mathbb{Z}}^{\lambda} = \mathcal{U}_{\mathbb{Z}}(\mathfrak{g}) \cdot v_{\lambda}$, a \mathbb{Z} -form of V^{λ} , (*v*) $V_{\mathbb{K}}^{\lambda} = \mathbb{K} \otimes_{\mathbb{Z}} V_{\mathbb{Z}}^{\lambda}$, for \mathbb{K} an arbitrary field.

DEPENDENCE ON CHOICES

Our group constructions depend on

– A choice of lattice $Q \le \Lambda \le P$ between the root lattice Q and weight lattice P,

– A dominant integral weight λ , and an integrable highest weight module V^{λ} ,

 $- \operatorname{A} \mathbb{Z}$ -form $V_{\mathbb{Z}}^{\lambda}$.

The lattice Λ can be realized as the lattice of weights of a suitable representation *V*.

Conversely, the additive group generated by all the weights of a faithful representation *V* of \mathfrak{g} forms a lattice $\Lambda = L_V$ between *Q* and *P* ([St], Lemma 27).

The simply connected group has desirable properties when we choose a highest weight module whose set of weights contains all the fundamental weights. For example:

 $-L_V = Q$ if *V* is the adjoint representation, and

 $-L_V = P$ if $V = V^{\omega_1 + \dots + \omega_\ell}$, the highest weight module corresponding to the sum of the fundamental weights.

DEPENDENCE ON CHOICES: PARTIAL RESULTS

Finite dimensional Chevalley groups are independent of the choice of V^{λ} for $\lambda \in Q$ or $\lambda \in P$ and of the \mathbb{Z} -form $V_{\mathbb{Z}}^{\lambda}$ ([Hu], Ch 27).

Garland gave a representation theoretic construction of affine Kac–Moody groups as central extensions of loop groups, where each central extension corresponds to a unique cohomology class represented by a cocycle, known as the *Steinberg cocycle*.

He characterized the dependence on the choice of highest weight module V^{λ} for affine groups in terms of the Steinberg cocycle ([Ga1]). For general Kac–Moody groups, the dependence on the choice of V^{λ} is not completely understood.

In [CW], the authors gave some preliminary results about the dependence of $G_{V^{\lambda}}(\mathbb{Z})$ on λ when \mathfrak{g} is simply laced and hyperbolic.

For example, we conjectured that the discrepancy between the groups $E_{10}^{V^{\lambda}}(\mathbb{Z})$, as λ varies over the dominant integral weights, is contained in a finite abelian group of order at most $(\mathbb{Z}/2\mathbb{Z})^{10}$.

Some applications

Here are some choices of modules V for E_9 , E_{10} and E_{11} that have physical relevance for the study of symmetries of supergravity and superstring theory.

Algebra	Highest weight module
	$V=V^{\omega_1}$
$\mathfrak{e}_9(\mathbb{C})$	V integrable with high. wt. vector v^{ω_1}
	corresp. to fund. weight ω_1
	$V=V^{\omega_1+\dots+\omega_{10}}$
$\mathfrak{e}_{10}(\mathbb{C})$	V integrable with high. wt. vector
	$v^{\omega_1+\dots+\omega_{10}}$
	$V=V^{\omega_{11}}$
$\mathfrak{e}_{11}(\mathbb{C})$	V integrable with high. wt. vector $v^{\omega_{11}}$
	corresp. to fund. weight ω_{11}

These choices give rise to group constructions which are useful in physical models. For example our generating set for E_{11} was used in [GW].