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TOPICS

(1) Overview and introductory comments

(2) Lie algebras: finite and infinite dimensional

(3) Weights, representations and universal enveloping algebra

(4) (Kac–Moody) Chevalley groups

(5) (Kac–Moody) Chevalley groups over Z, generators and defining
relations for (Kac–Moody) Chevalley groups

(6) Structure constants for Kac–Moody algebras and Chevalley
groups

Today we will answer the question of constructing (Kac–Moody) Chevalley
groups over Z and of associating defining relations to (Kac–Moody)
Chevalley groups.



LAST TIME: (KAC–MOODY) CHEVALLEY GROUPS

Let g be a symmetrizable Lie algebra or Kac–Moody algebra over C.

Let K be an arbitrary field. Let αi, i ∈ I, be the simple roots and ei, fi the
generators of g.

Let Vλ
K be a K–form of an integrable highest weight module Vλ for g,

corresponding to dominant integral weight λ and defining representation
ρ : g→ End(Vλ

K).

For s, t ∈ K, let

χαi(s) = exp(ρ(sei)), χ−αi(t) = exp(ρ(tfi)).

Then
GVλ(K) = 〈χαi(s), χ−αi(t) | s, t ∈ K〉 ≤ Aut(Vλ

K)

is a simply connected (Kac–Moody) Chevalley group corresponding to g.



CONSTRUCTING A SIMPLY CONNECTED

(KAC–MOODY) CHEVALLEY GROUP

Recall that we chose a lattice Q ≤ Λ ≤ P between the root lattice Q
and weight lattice P, which can be realized as the lattice of weights of
a suitable representation V.

The simply connected group has desirable properties when we
choose a highest weight module whose set of weights contains all the
fundamental weights.

If we choose Λ = Q then GV is the adjoint Chevalley group
If we choose Λ = P then GV is the simply connected Chevalley group

If Q = P, then a representation whose set of weights contains all the
fundamental weights is V = Vω1+···+ω` , the highest weight module
corresponding to the sum of the fundamental weights.



THE CHEVALLEY GROUP FOR sl3(C)
Let sl3(C) denote the Lie algebra of 3×3 matrices of trace 0 over C.
Let α1, α2 denote the simple roots. The basis of the standard 3
dimensional representation ρ : sl3(C)→ End(V) of sl3(C) on
V = C⊕ C⊕ C is:

xα1 =

0 1 0
0 0 0
0 0 0

 , xα2 =

0 0 0
0 0 1
0 0 0

 ,

hα1 =

1 0 0
0 −1 0
0 0 0

 , hα2 =

0 0 0
0 1 0
0 0 −1

 ,

x−α1 =

0 0 0
1 0 0
0 0 0

 , x−α2 =

0 0 0
0 0 0
0 1 0

 .

Here we are using the Chevalley notation where xαi = ei, x−αi = fi.
The weights of ρ are:

ω1, ω2 − ω1, −ω2.

The representation ρ coincides with the highest weight module Vω1

with highest weight ω1.



LIE ALGEBRA sl3(C) TO CHEVALLEY GROUP SL3(C)

Let V = Vω1 be the highest weight module for sl3(C). Let
ρ : sl3(C)→ End(Vω1) be the defining representation. Let s, t ∈ C. In
Aut(Vω1), as before, we set

χαi(s) = exp(ρ(sxαi)), χ−αi(t) = exp(ρ(tx−αi))

But x2
α1

= x2
−α1

= 0 and x2
α2

= x2
−α2

= 0 thus

χα1 (s) = Id + ρ(sxα1 ) =

1 t 0
0 1 0
0 0 1

 , χ−α1 (t) = Id + ρ(tx−α1 ) =

 1 0 0
t 1 0
0 0 1

 ,

χα2 (s) = Id + ρ(sxα2 ) =

1 0 0
0 1 t
0 0 1

 , χ−α2 (t) = Id + ρ(tx−α2 ) =

1 0 0
0 1 0
0 t 1

 .

The lattice generated by the weights of Vω1 is the weight lattice P.
Thus the Chevalley group GVω1 is simply connected.



SIMPLY CONNECTED CHEVALLEY GROUP

CORRESPONDING TO sl3(C)

The simply connected Chevalley group is the group GVω1 ≤ Aut(Vω1),
generated by the automorphisms χ±αi :

GVω1
(C) = 〈χαi (s), χ−αi (t) | i = 1, 2, s, t ∈ C〉

= 〈exp(ρ(sxαi )), exp(ρ(tx−αi )) | i = 1, 2, s, t ∈ C〉

=

〈1 t 0
0 1 0
0 0 1

 ,

 1 0 0
t 1 0
0 0 1

 ,

1 0 0
0 1 t
0 0 1

 ,

1 0 0
0 1 0
0 t 1

 | s, t ∈ C
〉

This is the simple Lie group SL3(C).



ARITHMETIC SUBGROUP GV(Z)
The arithmetic subgroup SLn(Z) of SLn(C) is obtained by taking
Z–entries in the matrix representation of SLn(C).

This corresponds to taking ‘Z–points’

GV(Z) = 〈χαi(s), χ−αi(t) | s, t ∈ Z, i ∈ I〉

of the Chevalley group GV(C).

For GV(C) = SL2(C), this is the subgroup GV(Z) = SL2(Z) generated
by the matrices (

1 s
0 1

)
,

(
1 0
t 1

)
for s, t ∈ Z.

This is well known, but does not generalize to exceptional groups or
to Kac–Moody groups.

A crucial fact for generalizing this construction is the following.

The subgroup SL2(Z) of SL2(C) is also the stabilizer of a Z–form VZ of the
standard representation VC of the Lie algebra sl2(C).



HIDDEN STRUCTURE

Proposition The subgroup SL2(Z) of SL2(C) is the stabilizer of a Z-form VZ of the
standard representation VC of the Lie algebra sl2(C).

Proof: Take VZ = Z⊕ Z and VC = C⊕ C. Then SL2(Q) acts on VC:(
a b
c d

)
·
(

x
y

)
=

(
ax + by
cx + dy

)
.

Suppose now that
(

a b
c d

)
stabilizes VZ:

(
a b
c d

)
· VZ ⊆ VZ, that is

(
a b
c d

)
·
(

x
y

)
=

(
u
v

)
,

where ad− bc = 1, x, y ∈ Z and u = ax + by ∈ Z, v = cx + dy ∈ Z.

Take
(

x
y

)
=

(
0
1

)
. Then u = ax + by implies b ∈ Z and v = cx + dy implies d ∈ Z.

Take
(

x
y

)
=

(
1
0

)
. Then u = ax + by implies a ∈ Z and v = cx + dy implies c ∈ Z.

Thus if
(

a b
c d

)
· VZ ⊆ VZ then

(
a b
c d

)
∈ SL2(Z). �



‘ARITHMETIC SUBGROUP’ OF A (KAC–MOODY)
CHEVALLEY GROUP

For finite dimensional Chevalley groups, Chevalley defined the
arithmetic subgroup GVλ(Z) as follows:

GVλ(Z) = {g ∈ GVλ(C) | g(VZ) = VZ} ≤ Aut(VZ).

This is the subgroup of GVλ(C) preserving the lattice Vλ
Z in the

representation space Vλ.
How does this compare with the ‘group of Z–points’

GZ = 〈χαi(s), χ−αi(t) | s, t ∈ Z, i ∈ I〉

of
GC = 〈χαi(s), χ−αi(t) | s, t ∈ C, i ∈ I〉?

When g is finite dimensional, it is straightforward to prove that

GVλ(Z) ∼= GZ.

When g is an infinite dimensional Kac–Moody algebra, this is a difficult and
substantial theorem, proven by C-Liu.



SUBTLE ISSUES

If g =

(
a b
c d

)
∈ SL2(Z) is written in terms of the generators

(
a b
c d

)
= χ±α(t1)χ±α(t2) . . . χ±α(tk)

then it is not necessarily the case that the scalars ti are all integers:(
1 1
1 2

)
= χα(

1
2

)hα(
1
2

)χ−α(
1
2

) =

(
1 1

2
0 1

)( 1
2 0
0 2

)(
1 0
1
2 1

)
.

However, since g ∈ SL2(Z) and the χ±α(t) generate SL2(Z) for t ∈ Z,
there exist integers s1, . . . , sn such that

g = χ±α(s1)χ±α(s2) . . . χ±α(sn).



THE CHEVALLEY GROUP E7(Z)
Hull and Townsend, following Cremmer and Julia, discovered the
following form of E7(Z):

E7(+7)(Z) = E7(+7)(R) ∩ Sp(56,Z)

in the framework of type II superstring theory. Soulé gave a rigorous
mathematical proof that the E7(+7)(Z) of Hull and Townsend
coincides with the Chevalley Z–form of G = E7 given by

E7(Z) = {g ∈ E7(C) | g(VZ) = VZ} ≤ Aut(VZ).

Here VZ is the stabilizer of the standard lattice in the unique
56–dimensional fundamental representation of E7.



GENERATING SETS

Theorem ([CL]) Let R be a commutative ring with 1. Let λ be a
dominant integral weight and let Vλ be the corresponding integrable
highest weight module with simply connected Kac–Moody
Chevalley group

GVλ(R) = 〈exp(ρ(sei)), exp(ρ(tfi)) | s, t ∈ R〉

Let s, t ∈ R, u ∈ R× and set

χαi(s) = exp(ρ(sei)), χ−αi(t) = exp(ρ(tfi)),

w̃αi(u) = χαi(u)χ−αi(−u−1)χαi(u), hαi(u) = w̃αi(u)w̃αi(1)−1.

Then GVλ(R) has the following generating sets:
(1) χαi(s) and χ−αi(t),
and
(2) χαi(s) and w̃αi(1) = χαi(1)χ−αi(−1)χαi(1).



GENERATING SETS FOR SL2(Z)

The simply connected Chevalley group SL2(Z) has the following
generating sets

(1) χα(1) and χ−α(1), corresponding to matrices

(
1 1
0 1

)
and

(
1 0
1 1

)
.

(2) χα(1) and w̃α(1) = χα(1)χ−α(−1)χα(1), corresponding to
matrices

(
1 1
0 1

)
and

(
0 1
−1 0

)
where s ∈ Z.



GENERATORS AND RELATIONS FOR CHEVALLEY

GROUPS
Steinberg gave a defining presentation for finite dimensional
Chevalley groups over commutative rings R, using the generating
sets that we have described.
Tits gave generators and relations for Kac–Moody groups,
generalizing the Steinberg presentation.
In the finite dimensional case, there is a Chevalley type commutation
relation of the form

(χα(u), χβ(v)) =
∏
m,n

χmα+nβ(Cmnαβumvn)

between every pair of elements χα, χβ .
Here u, v ∈ R, Cmnαβ are integers and the χα are viewed as formal
symbols in

Uα = {χα(u) | α ∈ ∆, u ∈ R} ∼= (R,+).

However, in the infinite dimensional case, Tits’ presentation of
Kac–Moody groups has infinitely many Chevalley commutation
relations.



DETERMINING TITS’ KAC–MOODY GROUP

PRESENTATION

In the infinite dimensional Kac–Moody case, Tits determined that
whenever a pair of real roots is ‘prenilpotent’, then there is a
Chevalley commutation relation necessary for defining the
Kac–Moody group. In order to make Tits’ presentation complete, we
need to:
Explicitly describe the infinite set of prenilpotent pairs of roots.
This usually requires us to:
Explicitly describe the infinite set of positive real roots.
There is no guarantee that either of these tasks can be carried out in
practice.



PRENILPOTENT PAIRS
Let (α, β) be a pair of real roots and let W denote the Weyl
group. Then (α, β) is called a prenilpotent pair, if there exist
w, w′ ∈W such that

wα, wβ ∈ ∆re
+ and w′α, w′β ∈ ∆re

−.

A pair of roots {α, β} is prenilpotent if and only if α 6= −β and

(Z>0α+ Z>0β) ∩∆re
+

is a finite set. For every prenilpotent pair of roots {α, β}, Tits
defined the Chevalley commutation relation

(χα(u), χβ(v)) =
∏

mα+nβ∈(Z>0α+Z>0β)∩∆re
+

χmα+nβ(Cmnαβumvn)

where u, v ∈ R and Cmnαβ are integers.

If g is finite dimensional, every pairs (α, β) of roots is
prenilpotent.



THE TITS–STEINBERG PRESENTATION
Let R be a commutative ring with 1. Let g be a finite dimensional
simple Lie algebra or symmetrizable Kac–Moody algebra.
We may associate to g a group G over R, generated by the set of
symbols {χα(u) | α ∈ ∆re,u ∈ R} satisfying relations (R1)–(R7) below.
Let i, j ∈ I, u, v ∈ R and α, β ∈ ∆re.

(R1) χα(u + v) = χα(u)χα(v);

(R2) For each prenilpotent pair (α, β),

(χα(u), χβ(v)) =
∏

m, n > 0
mα+ nβ ∈ Zα⊕ Zβ

χmα+nβ(Cmnαβumvn)

where Cmnαβ are integers.

(R3) w̃iχα(u)w̃−1
i = χwiα(ηα,iu),

(R4) hi(u)χα(v)hi(u)−1 = χα(vu〈α,α
∨
i 〉) for u ∈ R∗,

(R5) w̃ihj(u)w̃−1
i = hj(u)hi(u−aji ),

(R6) hi(uv) = hi(u)hi(v) for u, v ∈ R∗, and

(R7) (hi(u), hj(v)) = 1 for u, v ∈ R∗.



THE DIFFICULTY OF FINDING PRENILPOTENT PAIRS

For g = e10, work of Allcock has shown that the problem of
determining all prenilpotent pairs is tractable but impractical.
Namely, Allcock showed that for the number of W–orbits of
prenilpotent pairs of real roots having inner product equal to k
grows at least as fast as (const)k7 as k→∞.
For each such orbit, we then have to enumerate the
prenilpotent pairs of real roots.
We need a different approach.



SIMPLIFYING TITS’ PRESENTATION

Tits’ presentation is very redundant and can be reduced significantly.
In joint work with D. Allcock, we obtained a simplification of Tits’
presentation for Kac–Moody algebras that are simply laced and
hyperbolic, giving a finite presentation for these groups over Z.
A Dynkin diagram is simply laced if it consists only of single bonds
between nodes.
This class includes the group E10(Z), conjectured to be a discrete
symmetry group of Type II superstring theory.
Our result shows that in a simply laced hyperbolic Kac–Moody
group, the Chevalley commutation relations arising from simple roots
imply the Chevalley commutation relations arising from all real
roots.

t t t t t t t t t
t

α1 α3

α2

α4 α5 α6 α7 α8 α9 α10



A FINITE PRESENTATION FOR G(Z)
Let g be a simply laced, symmetrizable and hyperbolic
Kac–Moody algebra.
Tits’ presentation can be reduced to the following finite
presentation for G(Z):
Over R = Z, the generators Xi(u) are obtained from Xi = Xi(1)
via Xi(u) = Xu

i .

Any i Each i = {1, . . . , `} i 6= j not adjacent i 6= j adjacent

S4
i = 1 [S2

i ,Xi] = 1 SiSj = SjSi SiSjSi = SjSiSj

S2
i SjS−2

i = S−1
j

Si = XiSiXiS−1
i Xi [Si,Xj] = 1 XiSjSi = SjSiXj

S2
i XjS−2

i = X−1
j

[Xi,Xj] = 1 [Xi,Xj] = SiXjS−1
i

[Xi,SiXjS−1
i ] = 1

Table: The defining relations for G(Z), G simply laced and hyperbolic



COMPARING KAC–MOODY GROUPS

We have been considering the following group constructions:

− Tits’ presentation, which defines a Kac–Moody group,
− Our Kac–Moody Chevalley group GV(C), for some choice of V

We conjecture that over C, Tits’ group given by generators and
relations coincides with our Kac–Moody Chevalley group GV(C) for
some choice of highest weight module V.

This involves the functorial properties of Tits’ Kac–Moody group,
which are not completely understood.

In the finite dimensional case, this isomorphism is well known.



THE FEINGOLD–FRENKEL HYPERBOLIC KAC–MOODY

ALGEBRA AE3

Consider the hyperbolic Kac–Moody algebra with generalized Cartan
matrix (

2 −1 0
−1 2 −2

0 −2 2

)
It has been conjectured for some time that this hyperbolic algebra may be an
algebra of internal symmetries of Einstein’s gravitational equations.
The Weyl group W is the (3, 2,∞)-triangle group:

W = 〈w1,w2,w3 | w2
i = 1, (w2w3)3 = 1, (w1w3)2 = 1〉,

which is isomorphic to PGL2(Z).The Dynkin diagram

is not simply laced and hence does not satisfy the conditions to give
rise to our finite presentation.
In recent work with Scott Murray, we give a recursive method for
determining the infinite set of prenilpotent pairs of real roots in AE3.


	

