Convex Optimisation: Pre-Quiz

1. Recall that the Euclidean norm (or 2-norm) of a vector $x \in \mathbb{R}^n$ is given by

$$||x|| := \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}}.$$

Show that

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2 \quad \forall x, y \in \mathbb{R}^n.$$

2. Compute the gradient and Hessian of the function $f\colon \mathbb{R}^n_{++}\to \mathbb{R}$ given by

$$f(x) := \frac{1}{2} ||x||^2 - \sum_{i=1}^n x_i \ln(x_i).$$

3. Consider the sequence $(x_k) \subseteq \mathbb{R}$ given by

$$x_k := \frac{1}{k} + (-1)^k \quad \forall k \in \mathbb{N}.$$

What is the value of $\liminf_{k\to\infty} x_k$ and $\limsup_{k\to\infty} x_k$?

- 4. Let $(x_k) \subseteq \mathbb{R}^n$ be a convergent sequence. Show that (x_k) is a Cauchy sequence.
- 5. Give an example of a continuous function $f \colon \mathbb{R} \to \mathbb{R}$ with no minima such that $\inf_{x \in \mathbb{R}} f(x)$ is finite.

Convex Optimisation: Pre-Quiz Solutions

1. Recall that the Euclidean norm (or 2-norm) of a vector $x \in \mathbb{R}^n$ is given by

$$||x|| := \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}}$$

.

Show that

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2 \quad \forall x, y \in \mathbb{R}^n.$$

Solution: This follows by expanding the norm-squared in term of the dot-product and simplifying:

$$||x + y||^{2} + ||x - y||^{2} = (||x||^{2} + 2\langle x, y \rangle + ||y||^{2}) + (||x||^{2} - 2\langle x, y \rangle + ||y||^{2})$$

= 2||x||^{2} + 2||y||^{2}.

2. Compute the gradient and Hessian of the function $f\colon \mathbb{R}^n_{++}\to \mathbb{R}$ given by

$$f(x) := \frac{1}{2} \|x\|^2 - \sum_{i=1}^n x_i \ln(x_i).$$

Solution: The entires of the gradient $\nabla f(x) \in \mathbb{R}^n$ and the Hessian $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ are given by

$$[\nabla f(x)]_i = \frac{\partial f}{\partial x_i}$$
 and $[\nabla^2 f(x)]_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$,

hence it suffices to compute these two partial derivatives. These are given by

$$\frac{\partial f}{\partial x_i} = x_i - \log(x_i) - 1 \text{ and } \frac{\partial^2 f}{\partial x_j \partial x_i} = \begin{cases} 1 - \frac{1}{x_i} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}.$$

3. Consider the sequence $(x_k) \subseteq \mathbb{R}$ given by

$$x_k := \frac{1}{k} + (-1)^k \quad \forall k \in \mathbb{N}.$$

What is the value of $\liminf_{k\to\infty} x_k$ and $\limsup_{k\to\infty} x_k$? Solution: $\liminf_{k\to\infty} x_k = -1$ and $\limsup_{k\to\infty} x_k = +1$. 4. Let $(x_k) \subseteq \mathbb{R}^n$ be a convergent sequence. Show that (x_k) is a Cauchy sequence. Solution: Let $x \in \mathbb{R}$ denote the limit of (x_k) . Using the triangle inequality, we deduce

$$||x_n - x_k|| = ||(x_n - x) - (x_k - x)||$$

$$\leq ||x_n - x|| + ||x_k - x|| \to 0 \text{ as } n, k \to +\infty.$$

5. Give an example of a continuous function $f \colon \mathbb{R} \to \mathbb{R}$ with no minima such that $\inf_{x \in \mathbb{R}} f(x)$ is finite.

Solution: If $f(x) = \exp(x)$, then $\inf_{x \in \mathbb{R}} f(x) = 0$ but f(x) > 0 for all $x \in \mathbb{R}$.