

ACE Network Subject Information Guide

PMTH432 Abstract Algebra

Semester 2, 2021

Administration and contact details

Host department	School of Science and Technology	
Host institution	University of New England	
Name of lecturer	Dr Bea Bleile	
Phone number	+61 (0)458 752 680	
Email address	bbleile@une.une.edu.au	
Homepage	https://www.une.edu.au/staff-profiles/science-and-	
	technology/bbleile	
Name of honours coordinator	Dr Adam Harris	
Phone number	+61 (0)2 6773 2210	
Email address	aharris5@une.edu.au	
Name of masters coordinator	Dr Adam Harris	
Phone number	+61 (0)2 6773 2210	
Email address	aharris5@une.edu.au	

Subject details

Handbook entry URL	https://handbook.une.edu.au/units/2021/PMTH432?year=2021
Subject homepage URL	na
Honours student hand-out URL	na
Start date:	28 th June 2021
End date:	24 th September 2021
Contact hours per week:	4
Census date:	19 th July 2021
Lecture day(s) and time(s):	ТВА
Description of electronic access	ТВА
arrangements for students (for	
example, WebCT)	

Subject content

1. Subject content description

A A C E

This unit provides an introduction to the theory of groups and rings covering basic properties, subgroups and subrings, quotient structures, products of groups and rings, isomorphism theorems, cyclic groups, the Fundamental Theorem of Finitely Generated Abelian Groups, the Sylow Theorems, polynomial rings and fields of quotients. PMTH432 offers a further advanced topic in abstract algebra to be covered in the mini project which will be chosen in negotiation with the unit coordinator.

2. Week-by-week topic overview

na

3. Assumed prerequisite knowledge and capabilities

na

4. Learning outcomes and objectives

Upon completion of this unit, students will be able to:

- 1. demonstrate an understanding of advanced topics in algebra;
- 2. demonstrate an understanding of central concepts of modern algebra;
- 3. develop advanced theoretical understanding and computational methods;

4. prepare themselves for further studies in number theory, commutative algebra, Lie algebras, algebraic geometry, representation theory, algebraic topology, homological algebra, category theory;

5. apply their knowledge and communication skills to illustrate, demonstrate and teach modern mathematics;

6. demonstrate autonomy, well-developed judgement and adaptability to critically analyse and evaluate information and transmit solutions to complex problems.

VE TWORK

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors
this subject	for this subject
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8 Knowledge

K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines

K2: knowledge of research principles and methods

Skills

S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence

S2: cognitive and technical skills to demonstrate a broad understanding of a body of

knowledge and theoretical concepts with advanced understanding in some areas

S3: cognitive skills to exercise critical thinking and judgement in developing new understanding

S4: technical skills to design and use in a research project

S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences

Application of Knowledge and Skills

A1: with initiative and judgement in professional practice and/or scholarship

A2: to adapt knowledge and skills in diverse contexts

A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters

A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

Students will receive an electronic copy of the lecture notes. Additional texts are recommended but not required.

6. Assessment

Exam/assignment/classwork breakdown						
Exam	60 %	Assignments	30 %	F	Project	10 %
Assignment due dates		TBA				
Approximate exam date Before 15 th October 20			per 2021			

Image: Second second

Institution honours program details

Weight of subject in total honours assessment at	Click here to enter text.
host department	
Thesis/subject split at host department	Click here to enter text.
Honours grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
Н3	Enter range %

Institution masters program details

Weight of subject in total masters assessment at	6/96 (Master of Scientific Studies)
host department	
Thesis/subject split at host department	24/96 (Master of Scientific Studies)
Masters grade ranges at host department	
H1	85 - 100
H2a	75 - 84
H2b	65 - 74
НЗ	50 - 64