Partial Differential Equations: pre-quiz

1. Let $C[0,1] = \{f : f \text{ is continuous on } [0,1]\}$ and $||f|| = \max_{x \in [0,1]} |f(x)|$. Show that $(C[0,1], ||\cdot||)$ is a Banach space.

2. Let l^2 be the space of square summable sequences, namely contains $\{a_k\}$ satisfying $\sum_k |a_k|^2 < \infty$. Define the linear operator

$$T(a) = (a_1/1, a_2/2, a_3/3, \cdots, a_k/k, \cdots).$$

Show that T is bounded from l^2 to l^2 . What's the adjoint operator T^* ? What is TT^* ? What is the operator norm $||T||_{l^2 \to l^2}$?

3. Prove that for any bounded sequence $\{a_k\}$ in l^2 , there exists a subsequence $\{a_{k_j}\}$ which is weakly convergent.

4. Assume u(x,t) is a smooth solution with sufficient decay in x to the following nonlinear Schrödinger equation:

$$iu_t + \Delta u = |u|^2 u, \quad (x,t) \in \mathbb{R}^2 \times \mathbb{R}$$

$$u(x,0) = u_0(x).$$
 (1)

Prove that $||u(x,t)||_{L^2_x} = ||u_0||_{L^2_x}$ for any t.