Topological Groups: Pre-enrolment quiz

1. Give an ϵ - δ argument that the function $P : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$P(x,y) = x - y, \qquad x, y \in \mathbb{R},$$

is continuous.

- 2. Let $GL(2, \mathbb{R})$ be the group of 2×2 invertible real matrices under multiplication and $(\mathbb{R} \setminus \{0\}, \times)$ be the group of non-zero real numbers under multiplication.
 - (a) Explain why the map $D: \operatorname{GL}(2,\mathbb{R}) \to (\mathbb{R} \setminus \{0\}, \times)$ defined by

$$D(A) = \det(A), \qquad A \in \operatorname{GL}(2, \mathbb{R})$$

is a group homomorphism.

- (b) Show that $((0,\infty),\times)$ is a subgroup of $(\mathbb{R}\setminus\{0\},\times)$.
- (c) Explain why $D^{-1}((0,\infty))$ and $D^{-1}(\{1\})$ are subgroups of $\mathrm{GL}(2,\mathbb{R})$.
- (d) Why are they normal subgroups?
- (e) What is the index of $D^{-1}((0,\infty))$ in $\operatorname{GL}(2,\mathbb{R})$?
- (f) Is $GL(2, \mathbb{R})$ connected? Explain your answer.
- 3. Let \mathbb{Q} be the set of rational numbers and let d be the metric d(x, y) = |x y| on \mathbb{Q} . Explain why the interval $\{x \in \mathbb{Q} \mid |x| \leq 1\}$ is not compact.
- 4. Let $C_c((0,\infty))$ be the vector space of continuous, complex-valued functions on $(0,\infty)$ with compact support and define a map $\Lambda : C_c((0,\infty)) \to \mathbb{C}$ by

$$\Lambda(\phi) = \int_0^\infty \frac{\phi(x)}{|x|} \, \mathrm{d}x, \qquad \phi \in C_c((0,\infty)).$$

- (a) Explain why Λ is linear.
- (b) Show that Λ is invariant under the change of variable $x \mapsto ax$ for any $a \in (0, \infty)$.
- 5. Using the Orbit-Stabiliser Theorem or otherwise, find the order of the automorphism group of the cube.