

ACE Network Subject Information Guide

Mathematical Epidemiology

Semester 2, 2021

Administration and contact details

Host Department	School of Science (Mathematical Sciences)	
Host Institution	RMIT University	
Name of lecturer	Associate Professor Stephen Davis	
Phone number	03 9925 2278	
Email Address	stephen.davis@rmit.edu.au	
Homepage	https://www.rmit.edu.au/staff/profile?id=stephen.davis	
Name of Honours coordinator	Associate Professor Stephen Davis	
Phone number	03 9925 2278	
Email Address	stephen.davis@rmit.edu.au	

Subject details

Handbook entry URL	NA	
Subject homepage URL	NA	
Honours student hand-out URL	NA	
Start date:	Wednesday 28 July, 2021	
End date:	Wednesday 13 October, 2021	
Contact hours per week:	1 hour lectorial	
Lectorial day and time:	Wednesday 11am – 1pm (TBC)	
Census date:	17 September	
Description of electronic access arrangements for	Course materials are shared via DropBox;	
students (for example, WebCT)	lectorials are conducted over Zoom.	

Subject content

1. Subject content description

This course will immerse students in the epidemic theory that underpins our management of infectious diseases of humans and animals, including of course the ongoing global pandemic caused by the SARS-CoV-2 virus. The course will cover simple models for closed populations

of hosts, compartment models, multi-host pathogens, spatial dynamics, within-host dynamics and the type reproduction number.

2. Week-by-week topic overview

RMIT Week	Topics covered	Dates	Sections	Paper
1	-	19-23 July		-
2	R0; r; doubling time	26-30 July	1.1 1.1.5	How will country-based mitigation measures influence the course of the COVID-19 epidemic?
3	SIR model; final size equation	2-6 Aug	1.2 1.2.1	Appendices of How will country-based mitigation measures influence the course of the COVID-19 epidemic?
4	Solving the SIR model; SIR model with births and deaths; stability analysis	9-13 Aug	1.2.21.2.3, 2.12.2.3	Key questions for modelling Covid-19 exit strategies
5	Mean age at infection; SEI model for canine rabies	16-20 Aug	2.2.4	Synchronous cycles of domestic dog rabies in sub-Saharan Africa and the impact of control efforts
6	Probability of extinction; the dispersion parameter k; heterogeneity and superspreaders	23-27 Aug	3	Superspreading and the effect of individual variation on disease emergence
Mid- Seme ster Break				

7	Multi-host disease systems; Next Generation Matrix		4.14.2	The Basic Reproduction Number for Complex Disease Systems: Defining R0 for Tick-
8	Type reproduction number; NGM recipe for compartment models	6-10 Sep 13-17 Sep	4.34.4	Borne Infections A new method for estimating the effort required to control an infectious disease
9	Waning immunity	20-24 Sep	None	Pertussis models to inform vaccine policy
10	Seasonality; Cyprinid Herpes Virus 3	27 Sep - 1 Oct	5.1 5.2.2	An epidemiological model of koi herpesvirus (KHV) biocontrol for carp in Australia
11	Spatial spread; percolation; plague in Kazakhstan	4-8 Oct	6.1 6.4.3	The two main papers on the Kazakhstan plague system - Davis et al. (2005) & Davis et al. (2008).
12	Within-host infection dynamics	11-15 Oct	Review article by Jane Hefferman.	Should we expect population thresholds for wildlife disease?

3. Assumed prerequisite knowledge and capabilities

Students will be assumed to be familiar with systems of differential equations and the techniques used to analyse their behaviour and dynamics; it is advantageous to have completed an undergraduate course in differential equations or modelling with differential equations.

It is also assumed that students are comfortable with writing/modifying code in one or more programming environments such as R or Matlab.

4. Learning outcomes and objectives

Students will acquire a working knowledge of the mathematical techniques used to generate insight into biological systems. They will gain experience in translating the known biological properties of a system into a set of mathematical equations (a model) and vice versa be able to interpret equations in terms of the biology they capture. Students will be able to use epidemiological reasoning to characterise a pathogen in terms of its basic reproduction ratio and understand the usefulness and limitations of this quantity. Students will be able to numerically solve systems of differential equations to explore their behaviour and dynamics and draw biological conclusions.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in this subject	Associated AQF Learning Outcome Descriptors for this subject
Problem Solving - You will have the ability to apply knowledge and skill to characterise, analyse and solve a wide range of problems.	 S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas A2: to adapt knowledge and skills in diverse contexts

Knowledge	
•	t and advanced knowledge of the underlying principles and concepts in one or lines
K2: knowled Skills	ge of research principles and methods
Ũ	e skills to review, analyse, consolidate and synthesise knowledge to identify and itions to complex problem with intellectual independence
U	e and technical skills to demonstrate a broad understanding of a body of and theoretical concepts with advanced understanding in some areas
S3: cognitive understand	e skills to exercise critical thinking and judgement in developing new
S4: technica	l skills to design and use in a research project
S5: commur a variety of	nication skills to present clear and coherent exposition of knowledge and ideas t audiences
Application	of Knowledge and Skills
A1: with init	iative and judgement in professional practice and/or scholarship
A2: to adap	t knowledge and skills in diverse contexts
	ponsibility and accountability for own learning and practice and in collaboratior within broad parameters
A4: to plan a independen	and execute project work and/or a piece of research and scholarship with some ce

5. Learning resources

Lecture notes, recommended journal articles and recommended books will be made available over the course of the semester.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	40%	Assignment	20%+20%+20%	Class work	-
Assignmen	t due dates	03/09/2020	24/09/2020	15/10/2020	
Approxima	te exam date			3/11/2018	

Institution Honours program details

Weight of subject in total honours assessment at host department	12.5%
Thesis/subject split at host department	37.5% thesis/62.5% course work
Honours grade ranges at host department:	
H1	80-100 %
H2a	75-79 %
H2b	70-74 %
Н3	65-69 %