

ACE Network Subject Information Guide

Optimisation for Deep Learning

Semester 2, 2021

Administration and contact details

Host department	School of Information Technology
Host institution	Deakin University
Name of lecturer	Julien Ugon, Nadia Sukhorukova and Vera Roshchina
Phone number	+61 3 924 46311
Email address	Julien.ugon@deakin.edu.au
Homepage	Click here to enter text.
Name of honours coordinator	Julien Ugon (unit chair of the maths honours units)
Phone number	+61 3 924 46311
Email address	Julien.ugon@deakin.edu.au
Name of masters coordinator	Julien Ugon (there is no masters of mathematics at Deakin).
Phone number	+61 3 924 46311.
Email address	Julien.ugon@deakin.edu.au

Subject details

Handbook entry URL	N/A.
Subject homepage URL	http://www.mocao.org/odl/
Honours student hand-out URL	http://www.mocao.org/odl/
Start date:	August
End date:	October
Contact hours per week:	2 hours of lectures + 2hrs Consultation
Census date:	29 August
Lecture day(s) and time(s):	TBA.
Description of electronic access arrangements for students (for example, WebCT)	Zoom

Subject content

1. Subject content description

The aim of this unit is to introduce classical optimisation techniques that are essential for deep learning models. The structure includes lectures, tutorials and computer labs. The final assessment task is a (group) project.

2. Week-by-week topic overview

Weeks 1-3: Introduction to optimisation, machine learning and deep learning: general terminology and convention. Overview of optimisation problems appearing in deep learning.

Week 4: Linear optimisation and elements of linear integer optimisation.

Weeks 5-6: Convex optimisation.

Weeks 7-8: Non-convex optimisation.

Weeks 9-12: Guided study and project submission.

3. Assumed prerequisite knowledge and capabilities

Linear Algebra and Calculus (one semester each).

4. Learning outcomes and objectives

After taking this unit, the students will be able to:

- Formulate mathematical programming models for modern real-world applications of deep learning and data analysis given in a non-specialised description.
- Explain the difference between various optimisation problems
- Analyse optimisation problems and identify advantages and disadvantages of various formulations (approximate solutions.
- Apply cutting edge numerical tools to solve large scale optimisation problems and integrate them into machine learning software.

AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors
this subject	for this subject
Formulate mathematical programming	K1,S3,S4,A1
models for modern real-world applications	
Analyse optimisation problems	K1,K2,S1-S5,A1
Apply cutting edge numerical tools to solve	K1,K2,S1-S3,A1
large scale optimisation problems and	

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

w A C E N E T W O R K

integrate them into machine learning software

Learning Outcome Descriptors at AQF Level 8 Knowledge K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines K2: knowledge of research principles and methods Skills S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas S3: cognitive skills to exercise critical thinking and judgement in developing new understanding S4: technical skills to design and use in a research project S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences **Application of Knowledge and Skills** A1: with initiative and judgement in professional practice and/or scholarship A2: to adapt knowledge and skills in diverse contexts A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

Consult <u>http://www.mocao.org/odl/</u> for lecture notes, recommended software and other resources.

6. Assessment

Exam/assignment/classwork breakdown					
Final Project	60%	Assignment	20 %	Class work	20 %
Assignment due	dates	A1: September 2021	A2: October 2021	Click here to enter a date.	Click here to enter a date.
Approximate Pro	oject due date			October/Noven	nber 2021

Institution honours program details

Weight of subject in total honours assessment at	12.5%.
host department	
Thesis/subject split at host department	Thesis 62.5%, courses 37.5%
Honours grade ranges at host department	
H1	80-100 %

A A A A A A A A A A A A A A A A A A A	A C E E T W O R K
H2a	7 0-79 %
H2b	60-69 %
НЗ	50-59 %

Institution masters program details

Weight of subject in total masters assessment at	N/A.
host department	
Thesis/subject split at host department	100%
Masters grade ranges at host department	
H1	80-100 %
H2a	70-80 %
H2b	60-70 %
H3	50-60 %