THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Diagnostic Quiz

MATH4313: Functional Analysis	Semester 1, 2021

Web Page: https://www.maths.usyd.edu.au/u/UG/HM/MATH4313/ Lecturer: Daniel Daners

- **1.** Assume that (x_n) is a sequence in \mathbb{R}^N such that $x_n \to x$. Prove that $||x_n|| \to ||x||$ as $n \to \infty$. Is the converse correct as well?
- 2. Let (z_k) be a sequence of complex numbers and assume that the series $\sum_{k=0}^{\infty} |z_k|$ converges. Show that the sequence $s_n := \sum_{k=1}^n z_k$ of partial sums is a Cauchy sequence in \mathbb{C} .
- 3. Let V be an inner product space over \mathbb{C} with norm induced by the inner product, that is, $||x|| = \sqrt{\langle x, x \rangle}$, where $\langle \cdot, \cdot \rangle$ denotes the inner product.

Given $u, v \in V$ define $p(t) := ||u - t\langle u, v \rangle||^2$ for all $t \in \mathbb{R}$. Show that p(t) is a quadratic function of $t \in \mathbb{R}$ and determine its discriminant. Hence show that $|\langle u, v \rangle| \le ||u|| ||v||$.

Solutions

1. We use the reversed triangle inequality to see that

$$||x_n|| - ||x||| \le ||x_n - x|| \to 0$$

by assumption. By the squeeze law $|||x_n|| - ||x||| \to 0$ as $n \to \infty$ and hence $||x_n|| \to ||x||$.

The converse is not true. For instance if N = 1 and $x_n = (-1)^n$, then x_n does not converge, bu $|x_n| = 1$ does converge.

If you do not know the reversed triangle inequality here is how to prove it. Using the triangle inequality

$$||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x||.$$

If we rearrange we obtain

$$||x_n|| - ||x|| \le ||x_n - x||.$$

Interchanging the roles of x_n and x we also have

$$||x|| - ||x_n|| \le ||x - x_n|| = ||x_n - x||$$

Now combine the two inequalities.

2. Since $\sum_{k=1}^{\infty} |x_k|$ converges in \mathbb{C} the sequence $a_n := \sum_{k=1}^n |x_k|$ converges. Hence it is a Cauchy sequence, which means that given $\varepsilon > 0$ there exists n_0 such that

$$|a_m - a_n| = \sum_{k=n+1}^n |z_k| < \varepsilon$$

for all $m > n > n_0$. Now, by the triangle inequality

$$|s_m - s_n| = \left|\sum_{k=n+1}^m z_k\right| \le \sum_{k=n+1}^m |z_k| = |a_m - a_n| < \varepsilon$$

for all $m > n > n_0$. Hence (s_n) is a Cauchy sequence.

3. Let now $u, v \in V$ and $t \in \mathbb{R}$. Recall that inner products are conjugate linear in the second argument if the space is complex, and that $|z| = \overline{z}z$ for all $z \in \mathbb{C}$. Using the basic properties of the inner product we have

$$0 \le p(t) = ||u - t\langle u, v \rangle v||^{2} = \langle u - t\langle u, v \rangle v, u - t\langle u, v \rangle v \rangle$$

= $\langle u, u \rangle - \langle u, t\langle u, v \rangle v \rangle - \langle t\langle u, v \rangle v, u \rangle + \langle t\langle u, v \rangle v, t\langle u, v \rangle v \rangle$
= $||u||^{2} - t\overline{\langle u, v \rangle} \langle u, v \rangle - t\langle u, v \rangle \langle v, u \rangle + t^{2} \overline{\langle u, v \rangle} \langle u, v \rangle \langle v, v \rangle$
= $||u||^{2} - 2t|\langle u, v \rangle|^{2} + t^{2}|\langle u, v \rangle|^{2}||v||^{2}.$

The above is a non-negative quadratic with real coefficients. This is only possible if its discriminant satisfies

$$|\langle u, w \rangle|^4 - |\langle u, w \rangle|^2 ||u||^2 ||w||^2 \le 0.$$

If we rearrange the inequality the Cauchy-Schwarz inequality follows.