#### Lagrangian and Hamiltonian Dynamics: Background Skills Quiz

This quiz is for your benefit, I will not collect or mark it. It is to give you an idea of the type of skills that will be needed to be able to cope with this course. The material here is based on High School, 1st Year and 2nd year maths courses. You should be able to answer the questions without undue effort within the space provided.

### **Differential Equations**

Give the general solution of each of the following ODEs

| $\frac{d^2y}{dx^2} + 9y = 0$                  |  |
|-----------------------------------------------|--|
| $\frac{d^2y}{dx^2} - 9y = 0$                  |  |
| $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$ |  |
| $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ |  |
| $\frac{d^2y}{dx^2} + 9y = 7 + 2x$             |  |
| $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$ |  |
| $\frac{d^2y}{dx^2} + 9y = \sin(3x)$           |  |

### Change of variables

Rewrite the following expressions in polar coordinates using  $x = r \cos \phi$  and  $y = r \sin \phi$ .



## Derivatives

Calculate  $\frac{dy}{dx}$  for each of the following curves. You may write your answer in terms of the most convenient set of variables.



# Integrals



# Linear algebra

For each of the following write down as many **relevant** properties about the square matrix A, or its eigenvalues  $\lambda$  or eigenvectors as you can remember



## Vector algebra and Geometric Interpretation

Describe geometrically the set of points  $\mathbf{r}$  that satisfy the following conditions where c is a constant and  $\mathbf{n}$  is a constant unit vector.



### Trigonometry

Simplify the following expressions



### Curve sketching and logical thinking

Consider the family of curves given by the real equation  $y^2 + x^4 + 2ax^2 + b = 0$ . Match the given conditions on the left to the correct curves on the right and sketch the missing curve. Each condition matches exactly one curve.



What is the condition for there to be no real points on the curve?

Blank Page for Notes and Working

| Skills and Topics (I should brush up on)   | I don't       | I should    | Yeah,  |
|--------------------------------------------|---------------|-------------|--------|
|                                            | even remember | revise this | I know |
|                                            | learning this |             | this!  |
| Homogeneous 2nd order Linear ODEs          |               |             |        |
| Inhomogeneous 2nd order Linear ODEs        |               |             |        |
| ODEs with repeated roots (or resonant RHS) |               |             |        |
| Manipulating differentials (dx, dy etc.)   |               |             |        |
| Change of variables in integral            |               |             |        |
| Change of variables in double integral     |               |             |        |
| Differentiating trig functions             |               |             |        |
| Differentiating inverse trig functions     |               |             |        |
| Implicit differentiation                   |               |             |        |
| Integration by parts                       |               |             |        |
| Integration by substitution                |               |             |        |
| Integration by partial fractions           |               |             |        |
| Properties of determinants                 |               |             |        |
| Properties of eigenvalues                  |               |             |        |
| Properties of eigenvectors                 |               |             |        |
| Scalar and vector products                 |               |             |        |
| Trig identities                            |               |             |        |
| Inverse Trig functions                     |               |             |        |
| Hyperbolic Trig functions                  |               |             |        |
| Quadratic equations and discriminants      |               |             |        |

#### Lagrangian and Hamiltonian Dynamics: Background Skills Quiz

#### **SOLUTIONS**

This quiz is for your benefit, I will not collect or mark it. It is to give you an idea of the type of skills that will be needed to be able to cope with this course. The material here is based on High School, 1st Year and 2nd year maths courses. You should be able to answer the questions without undue effort.

#### **Differential Equations**

| Give the general solution of each of the following ODEs |                                                                                  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------|--|
| $\frac{d^2y}{dx^2} + 9y = 0$                            | $y(x) = A\sin(3x) + B\cos(3x)$                                                   |  |
| $\frac{d^2y}{dx^2} - 9y = 0$                            | $y(x) = A\exp(3x) + B\exp(-3x)$                                                  |  |
| $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$           | $y(x) = A\exp(-2x) + B\exp(-3x)$                                                 |  |
| $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$           | $y(x) = A\exp(2x) + B\exp(3x)$                                                   |  |
| $\frac{d^2y}{dx^2} + 9y = 7 + 2x$                       | $y(x) = A\sin(3x) + B\cos(3x) + (7+2x)/9$                                        |  |
| $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$           | $y(x) = A\exp(-2x) + Bx\exp(-2x)$                                                |  |
| $\frac{d^2y}{dx^2} + 9y = \sin(3x)$                     | $y(x) = A\sin(3x) + B\cos(3x) + y_p(x)$<br>$y_p(x) = (\sin(3x) - 6x\cos(3x))/36$ |  |

### Change of variables

Rewrite the following expressions in polar coordinates using  $x = r \cos \phi$  and  $y = r \sin \phi$ .

$$\int x dy - y dx = \int r^2 d\phi$$

$$\int \int x dx dy = \int \int r \cos \phi r dr d\phi$$

$$dx^2 + dy^2 = dr^2 + r^2 d\phi^2$$

# Derivatives

Calculate  $\frac{dy}{dx}$  for each of the following curves. You may write your answer in terms of the most convenient set of variables.

$$y = \sin^{-1}(x) \qquad y' = \frac{1}{\sqrt{1-x^2}}$$
$$\cos(x) = \ln(y) + \sinh(y) \qquad y'(x) = -\sin(x)(y^{-1} + \cosh y)^{-1}$$
$$x = \sin(t) - t; \quad y = \tan(t) \qquad \frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{(\sec t)^2}{\cos t - 1}$$
$$F(x, y) = 0 \qquad \frac{dy}{dx} = -\frac{\partial_x F}{\partial_y F}$$

# Integrals

$$\int x \ln(x) dx = \frac{1}{2}x^2 \log x - \frac{1}{4}x^2 + C$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \cosh^{-1}(x/a) + C \text{ using } x = a \cosh t$$

$$= \log(x/a + \sqrt{(x/a)^2 - 1}) + C \text{ using } x = a \sec t$$

### Linear algebra

For each of the following write down as many **relevant** properties about the square matrix A, or its eigenvalues  $\lambda$  or eigenvectors as you can remember

| A invertible, all $\lambda \neq 0$                                                | $A \underline{x} = \underline{b}$ has a unique solution for $\underline{x}$ |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\lambda = 0, \det A = 0, A \text{ not invertible}$                               | $A \underline{x} = 0$ has a non-zero solution for $\underline{x}$           |
| all $\lambda > 0$ , $\underline{x}^t A \underline{x} > 0$ for any $\underline{x}$ | A is positive definite                                                      |
| all $\lambda$ real, $A$ is diagonalisable by<br>orthogonal transformation         | A is real symmetric                                                         |

# Vector algebra and Geometric Interpretation

Describe geometrically the set of points  $\mathbf{r}$  that satisfy the following conditions where c is a constant and  $\mathbf{n}$  is a constant unit vector.

| $\mathbf{r}\cdot\mathbf{n}=0$     | plane through origin orthogonal to ${\bf n}$            |
|-----------------------------------|---------------------------------------------------------|
| $\mathbf{r} \cdot \mathbf{n} = c$ | plane orthogonal to <b>n</b> , distance $ c $ to origin |
| $\mathbf{r} 	imes \mathbf{n} = 0$ | line through origin parallel to ${\bf n}$               |

### Trigonometry

Simplify the following expressions

$$\frac{1 - \cos(2\theta)}{\sin(2\theta)} = \tan \theta$$
$$\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}$$
$$\tan(\sin^{-1}(x)) = \frac{x}{\sqrt{1 - x^2}}$$
$$\cosh^2 x + \sinh^2 x = \cosh(2x)$$

### Curve sketching and logical thinking

Consider the family of curves given by the real equation  $y^2 + x^4 + 2ax^2 + b = 0$ . Match the given conditions on the left to the correct curves on the right and sketch the missing curve. Each condition matches exactly one curve.

