

ACE Network Subject Information Guide

Random Matrix Theory, MAST90103 Semester 1, 2022

Administration and contact details

Host department	School of Mathematics and Statistics	
Host institution	University of Melbourne	
Name of lecturer	Mario Kieburg	
Phone number	+61-(0)3-834-47419	
Email address	m.kieburg@unimelb.edu.au	
Homepage	Does not exist	
Name of honours coordinator	Jennifer Flegg	
Phone number	<u>+61383447523</u>	
Email address	jennifer.flegg@unimelb.edu.au	
Name of masters coordinator	Jennifer Flegg	
Phone number	<u>+61383447523</u>	
Email address	jennifer.flegg@unimelb.edu.au	

Subject details

Handbook entry URL	https://handbook.unimelb.edu.au/subjects/mast90103
Subject homepage URL	https://canvas.lms.unimelb.edu.au/courses/139508
Honours student hand-out URL	Does not exist
Start date:	1 March 2022
End date:	27 May 2022
Contact hours per week:	3
Census date:	31st of March
Lecture day(s) and time(s):	Tuesday 4:15pm-5:15pm
	Wednesday 4:15pm-5:15pm
	Friday 11:00am-12:00pm
Description of electronic access arrangements for	Zoom, Canvas/LMS webpage, Gradescope
students (for example, WebCT)	and Ed-Chatroom Platform

Subject content

1. Subject content description

Random matrix theory is a diverse mathematical tool. It draws together ideas from linear algebra, multivariate calculus, analysis, probability theory, group and representation theory, differential geometry, combinatorics and mathematical physics. It also enjoys a wide number of applications, ranging from wireless communication in engineering, to time series analysis in statistics, quantum chaos and quantum field theory in physics, to the Riemann zeta function zeros and prime numbers in number theory. A self contained development of random matrix theory will be undertaken in this subject from various viewpoints.

2. Week-by-week topic overview

1st Week: Recalling Basics from Linear Algebra and Analysis and Gaussian Integrals

2nd Week: Likelihood Estimation, Loop Equations and Macroscopic Level Density

3rd Week: Level Repulsion and Wigner's Surmise as well as Involutions

4th Week: Classification of Symmetric Matrix Spaces and Wigner Ensembles

5th Week: Diagonalisation of Group-invariant Ensembles

6th Week: k-point Correlation Functions and the Method of Orthogonal Polynomials

7th Week: Determinantal Point Processes and Saddle-Point Approximation

8th Week: Local Spectral Statistics and Gap-Probabilities

9th Week: Pfaffian Point Processes and the Cases of β =1,4

10th Week: Supersymmetry and Non-linear Sigma Models

11th Week: Log Gases and Tricomi's Formula

12th Week: Matrix Sums and Products and the Concepts of Free Probability Theory

3. Assumed prerequisite knowledge and capabilities

Essential: Real Analysis, Complex Analysis, Linear Algebra

Desirable: Measure and/or Probability Theory, Group Theory and/or Algebra, Differential Geometry, Mathematical Physics and/or Statistics

4. Learning outcomes and objectives

- -Gaussian random matrix models and their application in likelihood analysis and modelling covariance matrices in time series analysis;
- -eigenvalue densities and the concept of eigenvalue repulsion;
- -classification of random matrices ensembles;
- -derivation of Jacobians for matrix transformations such as diagonalisations;
- -joint eigenvalue densities and correlation functions;
- -orthogonal polynomials and the concept of determinantal point processes;
- -supersymmetry and non-linear sigma-models;
- -the log-gas picture;
- -free probability theory and its application to matrix sums and products.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed	Associated AQF Learning Outcome Descriptors
in this subject	for this subject
Identify the objectives of random matrix theory	K1,K2,S1,S2
from the viewpoint of mathematical physics, and	
other areas of mathematics such as probability	
theory and mathematical statistics	
Compute matrix Jacobians, apply the concepts of	K2,S1,S2
joint eigenvalue probability density functions,	
correlation functions, and spacing distributions,	

and understand their relevance to random matrix theory	
Demonstrate comprehension of how the symmetry classification is related to matrix (Lie-)groups	K1,K2,S2
Explain the basic ideas of the techniques of orthogonal polynomials, supersymmetry, loop equations, moment method and free convolutions in the analysis of random matrices	K1,K2,S2
problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies	S1,S2,S3,S4,A1,A2
analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis	S1,S2,S3,S4,S5
time-management skills: the ability to meet regular deadlines while balancing competing commitments	A3,A4

Learning Outcome Descriptors at AQF Level 8 Knowledge

K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines

K2: knowledge of research principles and methods

Skills

S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence

S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas

S3: cognitive skills to exercise critical thinking and judgement in developing new understanding

S4: technical skills to design and use in a research project

S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences

Application of Knowledge and Skills

A1: with initiative and judgement in professional practice and/or scholarship

A2: to adapt knowledge and skills in diverse contexts

A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters

A4: to plan and execute project work and/or a piece of research and scholarship with some independence

6. Assessment

Exam/assignment/classwork breakdown					
Exam	60%	Assignment	40%	Class work	0 %
Assignmen	t due dates	8 April 2022	13 May 2022		
			•	•	
Approximate exam date Second to fourth week in Ju			h week in June		

Institution honours program details

Weight of subject in total honours assessment at	N/A
host department	
Thesis/subject split at host department	N/A
Honours grade ranges at host department	
H1	80-100 %
H2a	75-79 %
H2b	70-74 %
Н3	65-69 %

Institution masters program details

Weight of subject in total masters assessment at	12.5 credit points of 200 credit points
host department	
Thesis/subject split at host department	20 credit points of 200 credit points
Masters grade ranges at host department	
H1	80-100 %
H2a	75-79 %
H2b	70-74 %
Н3	65-69 %