
Topological Groups: Pre-enrolment quiz

1. Give an ε-δ argument that the function P : R2 → R defined by

P (x, y) = x− y, x, y ∈ R,

is continuous.

2. Let GL(2,R) be the group of 2× 2 invertible real matrices under multiplication and
(R \ {0},×) be the group of non-zero real numbers under multiplication.

(a) Explain why the map D : GL(2,R)→ (R \ {0},×) defined by

D(A) = det(A), A ∈ GL(2,R)

is a group homomorphism.

(b) Show that ((0,∞),×) is a subgroup of (R \ {0},×).

(c) Explain why D−1((0,∞)) and D−1({1}) are subgroups of GL(2,R).

(d) Why are they normal subgroups?

(e) What is the index of D−1((0,∞)) in GL(2,R)?

(f) Is GL(2,R) connected? Explain your answer.

3. Let Q be the set of rational numbers and let d be the metric d(x, y) = |x− y| on Q.
Explain why the interval {x ∈ Q | |x| ≤ 1} is not compact.

4. Let Cc((0,∞)) be the vector space of continuous, complex-valued functions on (0,∞)
with compact support and define a map Λ : Cc((0,∞))→ C by

Λ(φ) =

∫ ∞
0

φ(x)

|x|
dx, φ ∈ Cc((0,∞)).

(a) Explain why Λ is linear.

(b) Show that Λ is invariant under the change of variable x 7→ ax for any a ∈ (0,∞).

5. Using the Orbit-Stabiliser Theorem or otherwise, find the order of the automorphism
group of the cube.



Pre-enrolment quiz solutions
1. Fix ε > 0 and let δ = ε/2. Then, for xi, yi in R, i = 0, 1, if |x0− x1| and |y0− y1| are

both less than δ, then

|P (x0, y0)− P (x1, y1)| = |(x0 − y0)− (x1 − y1)|
= |(x0 − x1)− (y0 − y1)|
≤ |x0 − x1|+ |y0 − y1| < ε/2 + ε/2.

Hence P is continuous and is in fact uniformly continuous.
Comment: This argument takes the metric on R2 to be

d
(
(x0, y0), (x1, y1)

)
= max

{
|x0 − x1|, |y0 − y1|

}
.

Similar arguments apply if the metric is taken to be

d
(
(x0, y0), (x1, y1)

)
= |x0 − x1|+ |y0 − y1|

or

d
(
(x0, y0), (x1, y1)

)
=
√

(x0 − x1)2 + (y0 − y1)2.

Since all metrics for the product topology on R2 are equivalent, it does not matter
which one is chosen.

2. (a) GL(2,R) is the group of invertible 2×2 real matrices and a matrix A is invertible
if and only if its determinant is non-zero. Hence D maps GL(2,R) to R \ {0}
and is well-defined. The determinant satisfies that det(AB) = det(A) det(B)
for all square matrices A and B. Hence D is a homomorphism from GL(2,R)
to (R \ {0},×).
Comment: Since D preserves the group multiplication, it follows automatically
that D(I2) = 1 and D(A−1) = D(A)−1 for all A ∈ GL(2,R).

(b) The product of two positive real numbers is positive, and the inverse of every
positive number is positive. Hence ((0,∞),×) is closed under multiplication
and the inverse map and is a subgroup of (R \ {0},×).

(c) Since ((0,∞),×) and ({1},×) are subgroups of (R\{0},×) and since the inverse
image under a homomorphism of a subgroup is a subgroup, D−1((0,∞)) and
D−1({1}) are subgroups of GL(2,R).

(d) They are normal subgroups because (R \ {0},×) is abelian and ((0,∞),×) and
({1},×) are therefore normal subgroups. More explicitly, Let A ∈ D−1((0,∞))
and suppose that B ∈ GL(2,R). Then

D(BAB−1) = D(B)D(A)D(B)−1 = D(A)

which is positive. Hence BAB−1 ∈ D−1((0,∞)).
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(e) The index is 2 because R \ {0} = {1,−1}× (0,∞), which implies that the index
of ((0,∞),×) in (R \ {0},×) is 2.

(f) GL(2,R) is not connected. The determinant function is continuous and the
image, D(GL(2,R)), of GL(2,R) under the determinant R \ {0}. This set has
two connected components, (0,∞) and (−∞, 0).

3. For each n, let rn be the expansion of
√

1/2 to n decimal places. Then {rn}n∈N is a
sequence in {x ∈ Q | |x| ≤ 1} that converges to

√
1/2 in R. Since

√
1/2 is irrational,

there is no subsequence that converges to a rational number. Hence {rn}n∈N has no
convergent subsequence in {x ∈ Q | |x| ≤ 1} and this interval is not compact.
Comment: An alternative argument is to note that {[−1, rn) | n ∈ N} ∪ (

√
1/2, 1] is

an open cover of {x ∈ Q | |x| ≤ 1} that has no finite subcover.

4. (a) Properties of the integral imply that, if φ1, φ2 ∈ Cc((0,∞)) and b ∈ C, then

Λ(φ1 + φ2) =

∫ ∞
0

(φ1 + φ2)(x)

|x|
dx

=

∫ ∞
0

φ1(x)

|x|
dx+

∫ ∞
0

φ2(x)

|x|
dx = Λ(φ1) + Λ(φ2)

and

Λ(bφ1) =

∫ ∞
0

bφ1(x)

|x|
dx = b

∫ ∞
0

φ1(x)

|x|
dx = bΛ(φ1).

Hence Λ is linear.

(b) For φ ∈ Cc((0,∞)), denote the φa(x) = φ(ax). Then

Λ(φa) =

∫ ∞
0

φa(x)

|x|
dx =

∫ ∞
0

φ(ax)

|x|
dx.

Put u = ax. Then dx = 1
adu and∫ ∞

0

φ(ax)

|x|
dx =

∫ ∞
0

φ(u)
1
a |u|

1

a
du =

∫ ∞
0

φ(u)

|u|
du = Λ(φ).

Hence Λ(φa) = Λ(φ) and Λ is invariant under the change of variable.

5. Denote the automorphism group of the cube by G. Then G is transitive on the
8 vertices of the cube. Hence, denoting the stabiliser of the vertex v by Gv, the
Orbit-Stabiliser Theorem implies that

|G| = 8|Gv|.
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Next v has 3 vertices, call them r, s and t, adjacent to it and Gv is transitive on
those vertices. Hence, denoting the stabiliser of v and r by Gv,r, the Orbit-Stabiliser
Theorem implies that

|G| = 8× 3|Gv,r|.

Finally, Gv,r is transitive on {s, t} and the identity is the only automorphism that
fixes v, r, s and t. Hence the Orbit-Stabiliser Theorem implies that

|G| = 8× 3× 2 = 48.

Comment: Another, not recommended, argument would be to number the vertices
1, . . . , 8 and list all 48 automorphisms as permutations of {1, . . . , 8}.
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