

ACE Network Subject Information Guide

MATH4411: Applied Computational Mathematics

Semester 1, 2022

Administration and contact details

Host department	School of Mathematics and Statistics
Host institution	University of Sydney
Name of lecturer	Georg Gottwald
Phone number	
Email address	georg.gottwald@sydney.edu.au
Homepage	https://www.maths.usyd.edu.au/u/gottwald/
Name of honours coordinator	Marek Rutkowski
Phone number	
Email address	Marek.rutkowski@sydney.edu.au
Name of masters coordinator	Oded Yacobi
Phone number	
Email address	oded.yacobi@sydney.edu.au

Subject details

Handbook entry URL	https://www.sydney.edu.au/units/MATH4411
Subject homepage URL	https://www.maths.usyd.edu.au/u/UG/HM/
Honours student hand-out URL	https://www.maths.usyd.edu.au/u/UG/HM/
Start date:	21/02/2020
End date:	15/06/2022
Contact hours per week:	4
Census date:	11/03/2022
Lecture day(s) and time(s):	Monday 2-4pm; Wednesday 11-12; Wednesday
	1-2pm (computer lab/tutorial)
Description of electronic access arrangements for students (for example, WebCT)	Ed will be used to post questions, reference material, tutorial sheets etc.

Son A C E N E T W O R K

Subject content

1. Subject content description

Computational mathematics fulfils two distinct purposes within Mathematics. On the one hand the computer is a mathematician's laboratory in which to model problems too hard for analytical treatment and to test existing theories; on the other hand, computational needs both require and inspire the development of new mathematics. Computational methods are an essential part of the toolbox of any mathematician. This unit will introduce you to a suite of computational methods and highlight the fruitful interplay between analytical understanding and computational practice. In particular, you will learn both the theory and use of numerical methods to simulate partial differential equations, how numerical schemes determine the stability of your method and how to assure stability when simulating Hamiltonian systems, how to simulate stochastic differential equations, as well as modern approaches to distilling relevant information from data using machine learning. By doing this unit you will develop a broad knowledge of advanced methods and techniques in computational applied mathematics and know how to use these in practice. This will provide a strong foundation for research or further study.

2. Week-by-week topic overview

Weeks 1-3: Topic 1: Numerical integration of partial differential equations

Weeks 4-7: Topic 2: Symplectic Integrators for Hamiltonian Systems and Topic 3: Numerical Solution of Stochastic Differential Equations

Weeks 8-13: Topic 4: Applications of Singular Value Decomposition Topic 5: Dynamic patterns and the Koopman operator Topic 6: Machine learning

3. Assumed prerequisite knowledge and capabilities

Advanced background in linear algebra, calculus as well as in Fourier analysis and PDEs will be required. Students also will need to be fluent in a programming language such as Python, Matlab, C, Fortran, Julia.

A A C E

4. Learning outcomes and objectives

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors
this subject	for this subject
Knowledge	К1, К2
Skills	S1, S2, S3, S4, S5
Application of Knowledge and Skills	A1, A2, A3, A4
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8
Knowledge
K1: coherent and advanced knowledge of the underlying principles and concepts in one or
more disciplines
K2: knowledge of research principles and methods
Skills
S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and
provide solutions to complex problem with intellectual independence
S2: cognitive and technical skills to demonstrate a broad understanding of a body of
knowledge and theoretical concepts with advanced understanding in some areas
S3: cognitive skills to exercise critical thinking and judgement in developing new
understanding
S4: technical skills to design and use in a research project
S5: communication skills to present clear and coherent exposition of knowledge and ideas to
a variety of audiences
Application of Knowledge and Skills
A1: with initiative and judgement in professional practice and/or scholarship
A2: to adapt knowledge and skills in diverse contexts
A3: with responsibility and accountability for own learning and practice and in collaboration
with others within broad parameters
A4: to plan and execute project work and/or a piece of research and scholarship with some
independence

5. Learning resources

A list of reference material will be posted during the semester for the particular topics.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	40% (with a	Assignment	3 x 20%	Class work	0%
	50% passing				
	requirement)				
Assignment due dates		April 4 (may	May 4 (may	May 23 (may	Click here to
		change)	change)	change)	enter a date.
Approximate exam date Will be discussed with			ed with		
				students to find	l suitable day.

Institution honours program details

Weight of subject in total honours assessment	12.5%
at host department	
Thesis/subject split at host department	50% coursework, 50% thesis
Honours grade ranges at host department	0-100
H1	80-100
H2a	75-79
H2b	70-74
H3	65-69

Institution masters program details

Weight of subject in total masters assessment	6.25%
at host department	
Thesis/subject split at host department	75% coursework, 25% thesis
Masters grade ranges at host department	0-100
H1	
H2a	
H2b	
Н3	