C^* -algebras diagnostic quiz

- (1) Let (X, τ) be a topological space. Suppose that $f : X \to \mathbb{C}$ is continuous. Suppose that $x \in X$ and that $x_n \to x$ in X. Prove that $f(x_n) \to f(x)$. Is the converse true? That is, if $f(x_n) \to f(x)$ for every convergent sequence x_n in x, does it follow that f is continuous?
- (2) Let $(H, (\cdot | \cdot))$ be a complex Hilbert space (with inner-product conjugate-linear in the second variable), and fix $h, k \in H$. Prove that the formula $\Theta_{h,k}(l) = (l | k)h$ defines a linear $\Theta_{h,k} : H \to H$ that is bounded in the sense that there exists M > 0 such that $\|\Theta_{h,k}(l)\| \leq M \|l\|$ for all $l \in H$.
- (3) Let (x_n) be a Cauchy sequence of real numbers. Prove that $\liminf x_n = \limsup x_n$ and that $x_n \to \liminf x_n$.

Solutions

(1) Fix $\varepsilon > 0$. The open ball $U := B(f(x), \varepsilon)$ is open. Since f is continuous, the preimage $f^{-1}(U)$ is open in X. By definition, since $x_n \to x$, there exists N large enough so that $x_n \in f^{-1}(U)$ for all $n \ge N$. That is $f(x_n) \in U$ for all $n \ge N$, and so $n \ge N$ implies $|f(x_n) - f(x)| < \varepsilon$.

The converse is false (it's okay if you just know this fact but have not seen/can't think of an example). For example, consider the space $X := \mathbb{R}$ with the topology $\tau = \{\emptyset\} \cup \{\mathbb{R} \setminus S : S \text{ is countable}\}$. If (x_n) is a sequence in \mathbb{R} and $x_n \to x$ with respect to τ , then the set $S = \{x_n : n \in \mathbb{N}\} \setminus \{x\}$ is countable, and so $U := \mathbb{R} \setminus S$ is an open set containing x. Since $x_n \to x$, we must have $x_n \in U$ for large n, and so x_n is eventually constant. That is the only sequences that converge are eventually constant sequences. It follows that every function from \mathbb{R} to \mathbb{C} has the property that if $x_n \to x$ in \mathbb{R} with respect to τ , then $f(x_n) \to f(x)$. However, the function $f : X \to \mathbb{C}$ given by f(x) = x is not continuous: the preimage $f^{-1}(B(0; 1))$ of the open ball of radius 1 around 0 is $(-\infty, 1] \cup [1, \infty)$ which is neither empty nor the complement of a countable set and therefore not open in (X, τ) .

(2) We calculate $\Theta_{h,k}(\alpha l + l') = (\alpha l + l' | k)h = \alpha(l | k)h + (l' | k)h$, so $\Theta_{h,k}$ is linear. We have $\|\Theta_{h,k}(l)\| = |(l | k)| \|h\| \le \|l\| \|k\| \|k\|$ by the Cauchy–Schwarz inequality, so $M = \|h\| \|k\|$ is a bound for $\Theta_{h,k}$.

(3) For the first statement it suffices to show that for every $\varepsilon > 0$, we have $|\limsup x_n - \limsup x_n| \le \varepsilon$. So fix $\varepsilon > 0$. Since (x_n) is Cauchy there exists N such that $|x_m - x_n| < \varepsilon/3$ for all $m, n \ge N$. Since $(\sup\{x_i : i \ge n\})_n$ is a nonincreasing sequence converging to $\limsup x_n$, we have $\limsup x_n \le \sup\{x_i : i \ge N\}$ and $\liminf x_n \ge \inf\{x_i : i \ge N\}$. Fix $m, n \ge N$ such that $\sup\{x_i : i \ge M\} \le x_m + \varepsilon/3$ and $\inf\{x_i : i \ge M\} \ge x_n - \varepsilon/3$. Since $m, n \ge N$ we have $|x_m - x_n| < \varepsilon/3$. Since $\sup\{x_i : i \ge n\} \ge \inf\{x_i : i \ge n\}$ for all n, we have $\limsup x_n \ge \lim \inf x_n$, and hence

 $|\limsup x_n - \liminf x_n| = \limsup x_n - \liminf x_n < \sup\{x_i : i \ge N\} - \inf\{x_i : i \ge N\}$

$$\langle x_m + \varepsilon/3 - (x_n - \varepsilon/3) \leq |x_m - x_n| + 2\varepsilon/3 = \varepsilon.$$

Now since $\inf \{x_i : i \ge n\} \le x_n \le \sup \{x_i : i \ge n\}$ for all n, and since $\lim_n \inf \{x_i : i \ge n\}$ $n\} = \liminf_n x_n = \limsup_n x_n = \lim_n \sup \{x_i : i \ge n\}$, the sandwich lemma implies that $x_n \to \liminf_n x_n$.