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1. Assume that (𝑥𝑛) is a sequence in C such that 𝑥𝑛 → 𝑥. Prove that |𝑥𝑛 | → |𝑥 | as 𝑛 → ∞. Is the
converse correct as well?

2. Suppose that 𝐴 ⊆ 𝑅 is non-empty and bounded from above. Show that for an upper bound 𝑀

of 𝐴 the following statements are equivalent:

(i) 𝑀 = sup(𝐴);
(ii) 𝑀 ∈ 𝑅 is such that for 𝐴 such that for every 𝜀 > 0 there exists 𝑎 ∈ 𝐴 such that 𝑎 > 𝑀 − 𝜀.

Here sup(𝐴) is the supremum (or least upper bound) of 𝐴.

3. (a) Determine whether or not the series

∞∑︁
𝑛=1

𝑛!

𝑛𝑛

converges in R.

(b) Determine the spectral radius of the power series

∞∑︁
𝑘=1

𝑘!𝑧𝑘!

in C.

4. Let 𝑉 be an inner product space over C with norm induced by the inner product, that is,
∥𝑥∥ =

√︁
⟨𝑥, 𝑥⟩, where ⟨· , ·⟩ denotes the inner product.

Given 𝑢, 𝑣 ∈ 𝑉 define 𝑝(𝑡) := ∥𝑢− 𝑡⟨𝑢, 𝑣⟩∥2 for all 𝑡 ∈ R. Show that 𝑝(𝑡) is a quadratic function
of 𝑡 ∈ R and determine its discriminant. Hence show that |⟨𝑢, 𝑣⟩| ≤ ∥𝑢∥∥𝑣∥.
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Solutions
1. We use the reversed triangle inequality to see that��|𝑥𝑛 | − |𝑥 |

�� ≤ |𝑥𝑛 − 𝑥 | → 0

by assumption. By the squeeze law
��|𝑥𝑛 | − |𝑥 |

�� → 0 as 𝑛 → ∞ and hence |𝑥𝑛 | → |𝑥 |.
The converse is not true. For instance if 𝑁 = 1 and 𝑥𝑛 = (−1)𝑛, then 𝑥𝑛 does not converge, bu
|𝑥𝑛 | = 1 does converge.
If you do not know the reversed triangle inequality here is how to prove it. Using the triangle
inequality

|𝑥𝑛 | = |𝑥𝑛 − 𝑥 + 𝑥 | ≤ |𝑥𝑛 − 𝑥 | + |𝑥 |.
If we rearrange we obtain

|𝑥𝑛 | − |𝑥 | ≤ |𝑥𝑛 − 𝑥 |.
Interchanging the roles of 𝑥𝑛 and 𝑥 we also have

|𝑥 | − |𝑥𝑛 | ≤ |𝑥 − 𝑥𝑛 | = |𝑥𝑛 − 𝑥 |

Now combine the two inequalities.

2. (a) We use the ratio test to check for convergence. If 𝑎𝑛 is the 𝑛-th term in the series We
have

𝑎𝑛+1
𝑎𝑛

=
(𝑛 + 1)!
(𝑛 + 1)𝑛+1

𝑛𝑛

𝑛!
=

(𝑛 + 1)𝑛𝑛
(𝑛 + 1)𝑛+1)

=
𝑛𝑛

(𝑛 + 1)𝑛 =
1(

1 + 1
𝑛

)𝑛 𝑛→∞−−−−→ 1

𝑒
< 1

Hence the series converges.

(b) By the Cauchy-Hadamard theorem, the radius of convergence is

𝜚 =
1

lim𝑘→∞
𝑘!
√
𝑘!

=
1

lim𝑛→∞ 𝑛
√
𝑛
=
1

1
= 1.

3. (i) =⇒ (ii): We give a proof by contrapositive. If there exists 𝜀0 > 0 such that 𝑀 − 𝜀0 > 𝑎 for
all 𝑎 ∈ 𝐴, then 𝑀 − 𝜀0 is an upper bound with 𝑀 > 𝑀 − 𝜀0. Hence 𝑀 is not the supremum of
𝐴.
(ii) =⇒ (i): Since by assumption 𝑀 is an upper bound, we have to show that every upper bound
𝑚 satisfies 𝑀 ≤ 𝑚. We again use a contrapositive and assume that 𝑚 < 𝑀 and 𝜀 := 𝑀 − 𝑚.
By assumption there exists 𝑎 ∈ 𝐴 with 𝑎 > 𝑀 − 𝜀 = 𝑀 − (𝑀 − 𝑚) = 𝑚. Hence 𝑚 is not an
upper bound for 𝐴.

4. Let now 𝑢, 𝑣 ∈ 𝑉 and 𝑡 ∈ R. Recall that inner products are conjugate linear in the second
argument if the space is complex, and that |𝑧 | = �̄�𝑧 for all 𝑧 ∈ C. Using the basic properties of
the inner product we have

0 ≤ 𝑝(𝑡) = ∥𝑢 − 𝑡⟨𝑢, 𝑣⟩𝑣∥2 =
〈
𝑢 − 𝑡⟨𝑢, 𝑣⟩𝑣, 𝑢 − 𝑡⟨𝑢, 𝑣⟩𝑣

〉
= ⟨𝑢, 𝑢⟩ −

〈
𝑢, 𝑡⟨𝑢, 𝑣⟩𝑣

〉
−
〈
𝑡⟨𝑢, 𝑣⟩𝑣, 𝑢

〉
+
〈
𝑡⟨𝑢, 𝑣⟩𝑣, 𝑡⟨𝑢, 𝑣⟩𝑣

〉
= ∥𝑢∥2 − 𝑡⟨𝑢, 𝑣⟩⟨𝑢, 𝑣⟩ − 𝑡⟨𝑢, 𝑣⟩⟨𝑣, 𝑢⟩ + 𝑡2⟨𝑢, 𝑣⟩⟨𝑢, 𝑣⟩⟨𝑣, 𝑣⟩
= ∥𝑢∥2 − 2𝑡 |⟨𝑢, 𝑣⟩|2 + 𝑡2 |⟨𝑢, 𝑣⟩|2∥𝑣∥2.
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The above is a non-negative quadratic with real coefficients. This is only possible if its
discriminant satisfies

|⟨𝑢, 𝑤⟩|4 − |⟨𝑢, 𝑤⟩|2∥𝑢∥2∥𝑤∥2 ≤ 0.

If we rearrange the inequality the Cauchy-Schwarz inequality follows.
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