THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Diagnostic Quiz

MATH4061: Metric Spaces	Semester 1, 2022
Web Desser https://www.sudmey.edu.eu/umits/WATU4061/2022_S1C_ND_DE	

Web Page: https://www.sydney.edu.au/units/MATH4061/2022-S1C-ND-RE Lecturer: Daniel Daners

- **1.** Assume that (x_n) is a sequence in \mathbb{C} such that $x_n \to x$. Prove that $|x_n| \to |x|$ as $n \to \infty$. Is the converse correct as well?
- 2. Suppose that $A \subseteq R$ is non-empty and bounded from above. Show that for an upper bound *M* of *A* the following statements are equivalent:
 - (i) $M = \sup(A);$
 - (ii) $M \in R$ is such that for A such that for every $\varepsilon > 0$ there exists $a \in A$ such that $a > M \varepsilon$.

Here $\sup(A)$ is the supremum (or least upper bound) of A.

3. (a) Determine whether or not the series

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

converges in \mathbb{R} .

(b) Determine the spectral radius of the power series

$$\sum_{k=1}^{\infty} k! z^{k!}$$

in \mathbb{C} .

4. Let V be an inner product space over \mathbb{C} with norm induced by the inner product, that is, $||x|| = \sqrt{\langle x, x \rangle}$, where $\langle \cdot, \cdot \rangle$ denotes the inner product.

Given $u, v \in V$ define $p(t) := ||u - t\langle u, v \rangle||^2$ for all $t \in \mathbb{R}$. Show that p(t) is a quadratic function of $t \in \mathbb{R}$ and determine its discriminant. Hence show that $|\langle u, v \rangle| \le ||u|| ||v||$.

Solutions

1. We use the reversed triangle inequality to see that

$$\left||x_n| - |x|\right| \le |x_n - x| \to 0$$

by assumption. By the squeeze law $||x_n| - |x|| \to 0$ as $n \to \infty$ and hence $|x_n| \to |x|$.

The converse is not true. For instance if N = 1 and $x_n = (-1)^n$, then x_n does not converge, bu $|x_n| = 1$ does converge.

If you do not know the reversed triangle inequality here is how to prove it. Using the triangle inequality

$$|x_n| = |x_n - x + x| \le |x_n - x| + |x|.$$

If we rearrange we obtain

$$|x_n| - |x| \le |x_n - x|.$$

Interchanging the roles of x_n and x we also have

$$|x| - |x_n| \le |x - x_n| = |x_n - x|$$

Now combine the two inequalities.

2. (a) We use the ratio test to check for convergence. If a_n is the *n*-th term in the series We have

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)^n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \xrightarrow{n \to \infty} \frac{1}{e} < 1$$

Hence the series converges.

(b) By the Cauchy-Hadamard theorem, the radius of convergence is

$$\varrho = \frac{1}{\lim_{k \to \infty} \sqrt[k]{k!}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{n}} = \frac{1}{1} = 1.$$

3. (i) ⇒ (ii): We give a proof by contrapositive. If there exists ε₀ > 0 such that M - ε₀ > a for all a ∈ A, then M - ε₀ is an upper bound with M > M - ε₀. Hence M is not the supremum of A.

(ii) \implies (i): Since by assumption *M* is an upper bound, we have to show that every upper bound *m* satisfies $M \le m$. We again use a contrapositive and assume that m < M and $\varepsilon := M - m$. By assumption there exists $a \in A$ with $a > M - \varepsilon = M - (M - m) = m$. Hence *m* is not an upper bound for *A*.

4. Let now $u, v \in V$ and $t \in \mathbb{R}$. Recall that inner products are conjugate linear in the second argument if the space is complex, and that $|z| = \overline{z}z$ for all $z \in \mathbb{C}$. Using the basic properties of the inner product we have

$$0 \le p(t) = ||u - t\langle u, v \rangle v||^{2} = \langle u - t\langle u, v \rangle v, u - t\langle u, v \rangle v \rangle$$

= $\langle u, u \rangle - \langle u, t\langle u, v \rangle v \rangle - \langle t\langle u, v \rangle v, u \rangle + \langle t\langle u, v \rangle v, t\langle u, v \rangle v \rangle$
= $||u||^{2} - t\overline{\langle u, v \rangle} \langle u, v \rangle - t\langle u, v \rangle \langle v, u \rangle + t^{2} \overline{\langle u, v \rangle} \langle u, v \rangle \langle v, v \rangle$
= $||u||^{2} - 2t |\langle u, v \rangle|^{2} + t^{2} |\langle u, v \rangle|^{2} ||v||^{2}.$

The above is a non-negative quadratic with real coefficients. This is only possible if its discriminant satisfies 14 - 14 - 14 - 14 - 12 - 12

$$|\langle u, w \rangle|^4 - |\langle u, w \rangle|^2 ||u||^2 ||w||^2 \le 0.$$

If we rearrange the inequality the Cauchy-Schwarz inequality follows.