ACE Network Subject Information Guide

Methods and Theory of Modern Optimisation

Semester 1, 2022

Administration and contact details

Lloot deventue ent				
Host department	Mathematical Sciences, School of Science			
Host institution	RMIT University			
Name of lecturer(s)	Prof. Andrew Eberhard			
Phone number	(03) 99252616			
Email address	andy.eberard@rmit.edu.au			
Homepage	https://www.rmit.edu.au/contact/staff-contacts/academic-			
	staff/e/eberhard-professor-andrew			
Name of lecturer(s)	Dr. Scott B. Lindstrom			
Phone number	(04) 13017533			
Email address	scott.lindstrom@curtin.edu.au			
Homepage	https://carma.newcastle.edu.au/scott			
Name of honours coordinator	Assoc. Prof. Steven Davis			
Phone number	03 9925 2278			
Email address	stephen.davis@rmit.edu.au			

Subject details

Handbook entry URL	NA		
Subject homepage URL	https://www.mocao.org/ACE2022/		
Honours student hand-out URL	https://www.mocao.org/ACE2022/		
Start date:	28 th February		
End date:	27 th May		
Contact hours per week:	2 hours lectures + 1 hour online consultation		
Last day for ACE enrolment:	18 th March		
Lecture day(s) and time(s):	Tuesdays 2-4pm AEDT		
Description of electronic access arrangements for	https://www.mocao.org/ACE2022/		
students (for example, WebCT)			

Subject content

• Subject content description

Nonlinear and convex optimisation has gained wide use in data mining and machine learning in recent years. This has spawn new research and renewed interest in the underlying mathematical foundations behind descent methods. The main tool of machine learning is stochastic gradient descent which is corresponds to a statistically unbiased approximation of a deterministic descent method and is used widely in regression and classification problems. Thus, a renewed interest in first order gradient-based convex optimisation has arisen out of the study of this and similar problems. The nonsmooth version arises in other problems found in Machine learning, such as the regularised risk minimisation with binary hinge loss. In the area of signal processing, similar nonsmooth problems are faced when recovering corrupted signals with sparse support (compressed sensing). Moreover, optimisation under uncertainty also draws its techniques from the same well, with methods used to solve stochastic optimisation problems exploiting decomposition methods to create parallel programming approaches based on constrained convex optimisation, such as the so-called alternating direction method of multipliers (ADMM). Other feasibility methods based on projection-based methods also can be viewed as arising out of special cases of these general methods.

In the course we will take a modern view of the study of these and related problems, and the algorithms used to solve them. You will be introduced to the language of convex and nonsmooth optimisation, and shown how this powerful mathematical machinery allows one to analyse optimisation problems and develop algorithms for the solution of these problems. We will study the application of ADMM to various problem sets, including stochastic optimisation and feasibility problems. The ability to apply these techniques within the hyperspace of symmetric matrices allows the same methods to be applicable to a wider class of problems, and this aspect will also be explored.

Ultimately, we will look at the use of these techniques to some of the areas of application discussed above. Depending on the background of the student, scope is available in this course for projects involving theoretical work and/or more practical work involving the coding of methods.

• Week-by-week topic overview

Week 1: Convexity Preserving Operations, inner product spaces, symmetric matrices and Frobenius norm.

Week 2: Supports, Separation, relative interior and Subdifferentiability

Week 3: Fenchel Conjugate, Fenchel duality and Application in Optimization

Week 4: Lagrangian Duality and Penalty methods

Week 5: Introduction to Positive Semi-Definite problems.

Week 6: Simple subgradient methods, step size for methods and convergence

Week 7: Using subgradient methods in LPs and LR. Improvements when we have a gradient.

Week 8: The method of multipliers and alternating direction method of multipliers (ADMM).

Week 9: Using ADMM: Linear and Quadratic Programming Convex optimisation and Alternating Projections.

Week 10: Stochastic optimisation. Feasibility problems i.e. matrix completion

Week 11: Applications in Machine learning

Week 12: Inverse problems and Compressed sensing

• Assumed prerequisite knowledge and capabilities

Necessary: Any under-graduate courses in real analysis, basic vector calculus and linear algebra.

Desirable: Familiarity with a computer programming language like Matlab, Julia, Python, etc.

• Learning outcomes and objectives

On completion of this course student should have gained:

- Knowledge of advanced mathematical techniques in convex optimisation;
- The ability to reformulate problems and identify and/or develop numerical algorithms for the solution of these problems;
- Exposure to important classes of real world problems in areas like machine learning and signal processing.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in this subject	Associated AQF Learning Outcome Descriptors for this subject
Knowledge of advanced mathematical techniques in convex optimisation	K1 (knowledge)
The ability to reformulate problems and	S1 (Skills)
identify and/or develop numerical algorithms	
for the solution of these problems Exposure to important classes of real work	S2 (Skills)
problems in areas like machine learning and	
signal processing	
Insert Program Learning Outcome here	Choose from list below

• Learning resources

Students will be provided with a full set of lecture notes will be provided that are typeset in Latex. Preferred computing platforms include Matlab, Julia and Python.

• Assessment

Exam/assignment/classwork breakdown							
Exam/end of	30%	Mid-semester	30%	Weekly	40%		
semester		Assignment		Assessments			
project							
Mid-semester Assignment due		Week 6					
dates							
Approximate exam date			Week 12-14				

Institution honours program details

Weight of subject in total honours assessment at host department	12.5%		
Thesis/subject split at host department	25%thesis / 75% course work		
Honours grade ranges at host department			
H1	80 - 100%		
H2a	75 - 79%		
H2b	70 - 79 %		
Н3	60 - 79%		