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DIAGNOSTIC QUIZ
Questions 1. Prove that the limit
o1
lim sin —
x—0 x
does not exist.

Question 2. Let Fy,..., E, be finite subsets of the set Q. We denote by |E|
the number of elements in a finite set E. Prove the following

(1) |Ey U Es| = |E1| + |E2| — |Ey N Es

(2) |Ey U By U Es| = |Ex| + |Ea| + |Es| — | By N Ea| — |y 1 Es| — |Ea 1 Es| +
|E1 N Ey ﬂEdl

(3) Using mathematical induction prove that the following holds true:
|E\UE,U.. .UE,| = |Eg|— Y |ENEj|+...+(-1)"[EiNExN. . .NE,|.
k=1 i,7€{1,...,n}

Question 3. Let X be a binomially distributed random variable with param-
eters 0 < p < 1 and n > 1. This means that Prob(X = k) = (})p*(1 — p)"~* for
k=0,1,...,n. Prove that

(1) E(X) = np,

(2) Var(X) =np(1—p),

(3) Let Y1,...,Y, be independent random variables distributed Bernoulli with
parameter p, i.e., Prob(Yy = 1) = p, and Prob(Yy =0) =1—p for k =
1,...,n. Show that the random variable Z = Y; + ... +Y,, is binomially
distributed with parameters p and n.

(4) Let Yi,... be an infinite sequence of independent random variables dis-
tributed Bernoulli with parameter p, i.e., Prob(Y; = 1) = p, and Prob(Y}; =
0)=1—pfor k> 1. Let

T=min{n>1Y, =1}
if such an n exists and we put T' = oo otherwise. Show that
Prob(T =o0) =0.



ANSWERS

Question 1. By definition lim,_,,, f(z) exists if there exists a such that for every
sequence (Zy), T, — xo, we have

le_%of (Tn) = a.

Therefore, to show that the limit does not exist, it is enough to find two se-
quences (z,) and (y,), such that x, — =g, ¥y — w0, the limits lim, . f (z,)
and lim,, o f (yn) exist and

28, () 7 110 T (o)
To this end define

1 1
Ty = —, = .
" g + 2nm Yn 37” + 2nm
Then z,, — 0, y, — 0 and for every n > 1
1 1
—1=sin — #sin— =1.
Yn T
Since both sequences are constant we obtain
1
—1= lim sin — # lim sin — =1.
n— oo Un, n— oo T

Question 2.

(1) Assume first, that By N Es = (. Then, the formula holds: |Ey U Es| =
|E1] + | E2| and a similar formula obviously holds for three disjoint sets:

(1) |E1 U Ey U Es| = |Ey| + |Ez| + |E3|.
Since we have disjoint union
EyUE; = [(Bx\ (B1 N E)) U [(E2\ (Bx N E))| U (E1N E),
formula (1) gives
|E1 U Eo| = |Eq| + |Eq| + |Ey N Esy|.
Moreover,
Ey = (E1\ (E1NE))U(E1NE,),
and
Ey = (Ex\ (E1NEL))U(ELNEy,
hence for k = 1,2
Bkl = |Ex \ (E1 N E2)| + |Ex N B,
and the claim follows immediately.Of course the proof follows easily from
the geometric interpretation using Venn diagrams.
(2) Note that
EiUE;UE;=(E1UE;)UE;.
Therefore, using twice part 1 of the Question we obtain
|E1 U EyU Es| = |E1 U Es| + |Es| — |(E1 U Eg) N Es|
= |E1| 4 |E2| + |E3| — |E1 N Ea| — |(E1 U E2) N E3].
Using the fact that
(E1UEs)NEs=(EyNEs)U (E2N E3)
and
(E1NE3)N(E;NEs)=FE NEyNE3,



and invoking part 1 of the Question again we find that
|(E1 U Ey)NEs| =|EyUEs|+|ExNEs|— |Ey N EyN Esl|

Inserting the last fromula into equation (2) we complete the proof.
(3) Use the same idea as in the proof of part 2, noting that for n > 2

EiU---UE,=(ByU---E, 1)UE,.

Question 3.
(1) Note first that for & > 1

()36

Therefore
E(X)= Z kProb(X = k) = Z k(Z)pk(l —p)nk
k=0 k=0
n n -
= ij(k>pk(1 —p)nk
k=1
_ — (n—1 k—1 (n—1)—(k—1)
=np»_ (k_ 1)19 (1—p)™
k=1
n—1 n—1
=np < N )p’“(l —p)
k=0
= np.

The last inequality follows since (" ")p*(1 — p)»~Y~* are the binomial
probabilities for a binomially distributed random variable with parameters
p and (n — 1), hence

n—1

Z (n; 1)pk(1 —p) D=k =1,

k=0
(2) Let us recall first that
Var(X) = E(X?) - [E(X)]?,

and since for n = 1 we have X2 = X, the formula follows from part 1. We
need to consider n > 2. Next

E(X?) =E[X(X - 1)+ BE(X)
so that
(4) Var(X) = EIX(X —1)] - [E(X)]* + E(X)
. Tt remains to compute E[X (X — 1)].We will show that
(5) EX(X —1)]=n(n—1)p*.

Using twice equation (3) we obtain for n > k > 2

()= o (ina)



k=2
=St 1) ()t
k=2
" /n—2 Co)(f—
k=2
n_1p2n2(n ) )(n 2)—k
k=0 k
=n(n—1)p?

Combining (4), part 1 and (5) we obtain
Var(X) =n(n —1)p* = n’p* + np = np(1 — p)

as desired.

(3) Fix integers 1 <43 < --- < i <nandlet 1 <j; <--- < j,—k <n denote
the remaing integers in the set {1,...,n}. If k = 0 or k = n then one of
these sets is empty. By independence

P<}/i1:"':}/ik:17y}1 ’ Yrjn k_O):pk(l_p)n_k
Then number of choices of k indices i1, ..., 4 is equal to (Z) Then we have
PZ=k= Y PMa=-=Yy=1Y, =Y, =0

all choices of ij...,ix

= > PP —p*

all choices of ij...,ix

= (Z)p’“(l -p""

occurs if and only if £ out of n random variables take value 1 and the
remaining (n — k) random variables take value 0. Eac
(4) Tt is enough to show that

P(T <o0)=1.
We have
P(T < o) ZP (T =k).
Clearly, P(T'=1) = P(Y1 = 1) = p and for k > 2 using independence we
find that
P(T=k)=PYi=-=Y1=0,Y,=1)=(1-p)f 'p.
Therefore,

P(T < o0) i =1.

k=1



