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DIAGNOSTIC QUIZ

Questions 1. Prove that the limit

lim
x→0

sin
1

x
does not exist.

Question 2. Let E1, . . . , En be finite subsets of the set Ω. We denote by |E|
the number of elements in a finite set E. Prove the following

(1) |E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2|

(2) |E1 ∪ E2 ∪ E3| = |E1| + |E2| + |E3| − |E1 ∩ E2| − |E1 ∩ E3| − |E2 ∩ E3| +
|E1 ∩ E2 ∩ E3|.

(3) Using mathematical induction prove that the following holds true:

|E1∪E2∪. . .∪En| =
n∑
k=1

|Ek|−
∑

i,j∈{1,...,n}

|Ei∩Ej |+. . .+(−1)n+1|E1∩E2∩. . .∩En|.

Question 3. Let X be a binomially distributed random variable with param-
eters 0 < p < 1 and n ≥ 1. This means that Prob(X = k) =

(
n
k

)
pk(1 − p)n−k for

k = 0, 1, . . . , n. Prove that

(1) E(X) = np,
(2) V ar(X) = np(1− p),
(3) Let Y1, . . . , Yn be independent random variables distributed Bernoulli with

parameter p, i.e., Prob(Yk = 1) = p, and Prob(Yk = 0) = 1 − p for k =
1, . . . , n. Show that the random variable Z = Y1 + . . . + Yn is binomially
distributed with parameters p and n.

(4) Let Y1, . . . be an infinite sequence of independent random variables dis-
tributed Bernoulli with parameter p, i.e., Prob(Yk = 1) = p, and Prob(Yk =
0) = 1− p for k ≥ 1. Let

T = min {n ≥ 1; Yn = 1}
if such an n exists and we put T =∞ otherwise. Show that

Prob(T =∞) = 0 .

1



2

ANSWERS

Question 1. By definition limx→x0 f(x) exists if there exists a such that for every
sequence (xn), xn → x0, we have

lim
xn→x0

f (xn) = a .

Therefore, to show that the limit does not exist, it is enough to find two se-
quences (xn) and (yn), such that xn → x0, yn → x0, the limits limn→∞ f (xn)
and limn→∞ f (yn) exist and

lim
n→∞

f (xn) 6= lim
n→∞

f (xn) .

To this end define

xn =
1

π
2 + 2nπ

, yn =
1

3π
2 + 2nπ

.

Then xn → 0, yn → 0 and for every n ≥ 1

−1 = sin
1

yn
6= sin

1

xn
= 1 .

Since both sequences are constant we obtain

−1 = lim
n→∞

sin
1

yn
6= lim
n→∞

sin
1

xn
= 1 .

Question 2.

(1) Assume first, that E1 ∩ E2 = ∅. Then, the formula holds: |E1 ∪ E2| =
|E1|+ |E2| and a similar formula obviously holds for three disjoint sets:

(1) |E1 ∪ E2 ∪ E3| = |E1|+ |E2|+ |E3| .
Since we have disjoint union

E1 ∪ E2 = [(E1 \ (E1 ∩ E2))] ∪ [(E2 \ (E1 ∩ E2))] ∪ (E1 ∩ E2) ,

formula (1) gives

|E1 ∪ E2| = |E1|+ |E2|+ |E1 ∩ E2| .
Moreover,

E1 = (E1 \ (E1 ∩ E2)) ∪ (E1 ∩ E2) ,

and

E2 = (E2 \ (E1 ∩ E2)) ∪ (E1 ∩ E2 ,

hence for k = 1, 2

|Ek| = |Ek \ (E1 ∩ E2)|+ |E1 ∩ E2| ,
and the claim follows immediately.Of course the proof follows easily from
the geometric interpretation using Venn diagrams.

(2) Note that

E1 ∪ E2 ∪ E3 = (E1 ∪ E2) ∪ E3 .

Therefore, using twice part 1 of the Question we obtain

(2)
|E1 ∪ E2 ∪ E3| = |E1 ∪ E2|+ |E3| − |(E1 ∪ E2) ∩ E3|

= |E1|+ |E2|+ |E3| − |E1 ∩ E2| − |(E1 ∪ E2) ∩ E3| .
Using the fact that

(E1 ∪ E2) ∩ E3 = (E1 ∩ E3) ∪ (E2 ∩ E3)

and

(E1 ∩ E3) ∩ (E2 ∩ E3) = E1 ∩ E2 ∩ E3 ,
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and invoking part 1 of the Question again we find that

|(E1 ∪ E2) ∩ E3| = |E1 ∪ E3|+ |E2 ∩ E3| − |E1 ∩ E2 ∩ E3||

Inserting the last fromula into equation (2) we complete the proof.
(3) Use the same idea as in the proof of part 2, noting that for n ≥ 2

E1 ∪ · · · ∪ En = (E1 ∪ · · ·En−1) ∪ En .

Question 3.

(1) Note first that for k ≥ 1

(3)

(
n

k

)
=
n

k

(
n− 1

k − 1

)
Therefore

E(X) =

n∑
k=0

kProb(X = k) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k

=

n∑
k=1

k

(
n

k

)
pk(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np

n−1∑
k=0

(
n− 1

k

)
pk(1− p)(n−1)−k

= np.

The last inequality follows since
(
n−1
k

)
pk(1 − p)(n−1)−k are the binomial

probabilities for a binomially distributed random variable with parameters
p and (n− 1), hence

n−1∑
k=0

(
n− 1

k

)
pk(1− p)(n−1)−k = 1 .

(2) Let us recall first that

V ar(X) = E(X2)− [E(X)]2 ,

and since for n = 1 we have X2 = X, the formula follows from part 1. We
need to consider n ≥ 2. Next

E(X2) = E[X(X − 1)] + E(X)

so that

(4) V ar(X) = E[X(X − 1)]− [E(X)]2 + E(X)

. It remains to compute E[X(X − 1)].We will show that

(5) E[X(X − 1)] = n(n− 1)p2 .

Using twice equation (3) we obtain for n ≥ k ≥ 2(
n

k

)
=
n(n− 1)

k(k − 1)

(
n− 2

k − 2

)
,
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hence

E[X(X − 1)] =

n∑
k=2

k(k − 1)P (X = k)

=

n∑
k=2

k(k − 1)

(
n

k

)
pk(1− p)n−k

= n(n− 1)p2
n∑
k=2

(
n− 2

k − 2

)
pk−2(1− p)(n−2)−(k−2)

= n(n− 1)p2
n−2∑
k=0

(
n− 2

k

)
pk(1− p)(n−2)−k

= n(n− 1)p2 .

Combining (4), part 1 and (5) we obtain

V ar(X) = n(n− 1)p2 − n2p2 + np = np(1− p)
as desired.

(3) Fix integers 1 ≤ i1 < · · · < ik ≤ n and let 1 ≤ j1 < · · · < jn−k ≤ n denote
the remaing integers in the set {1, . . . , n}. If k = 0 or k = n then one of
these sets is empty. By independence

P (Yi1 = · · · = Yik = 1, Yj1 = · · · = Yjn−k
= 0) = pk(1− p)n−k .

Then number of choices of k indices i1, . . . , ik is equal to
(
n
k

)
Then we have

P (Z = k) =
∑

all choices of i1...,ik

P (Yi1 = · · · = Yik = 1, Yj1 · · · = Yjn−k
= 0)

=
∑

all choices of i1...,ik

pk(1− p)n−k

=

(
n

k

)
pk(1− p)n−k

occurs if and only if k out of n random variables take value 1 and the
remaining (n− k) random variables take value 0. Eac

(4) It is enough to show that

P (T <∞) = 1 .

We have

P (T <∞) =

∞∑
k=1

P (T = k) .

Clearly, P (T = 1) = P (Y1 = 1) = p and for k ≥ 2 using independence we
find that

P (T = k) = P (Y1 = · · · = Yk−1 = 0, Yk = 1) = (1− p)k−1p .
Therefore,

P (T <∞) =

∞∑
k=1

(1− p)k−1p = 1 .


