THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

STAT4528 PROBABILITY AND MARTINGALE THEORY SEMESTER 1 2022

LECTURERS: SASHA FISH AND BEN GOLDYS

DIAGNOSTIC QUIZ

Questions 1. Prove that the limit

$$
\lim_{x \to 0} \sin \frac{1}{x}
$$

does not exist.

Question 2. Let E_1, \ldots, E_n be finite subsets of the set Ω . We denote by $|E|$ the number of elements in a finite set E . Prove the following

- (1) $|E_1 \cup E_2| = |E_1| + |E_2| |E_1 \cap E_2|$
- (2) $|E_1 \cup E_2 \cup E_3| = |E_1| + |E_2| + |E_3| |E_1 \cap E_2| |E_1 \cap E_3| |E_2 \cap E_3| +$ $|E_1 \cap E_2 \cap E_3|$.
- (3) Using mathematical induction prove that the following holds true:

$$
|E_1 \cup E_2 \cup \ldots \cup E_n| = \sum_{k=1}^n |E_k| - \sum_{i,j \in \{1,\ldots,n\}} |E_i \cap E_j| + \ldots + (-1)^{n+1} |E_1 \cap E_2 \cap \ldots \cap E_n|.
$$

Question 3. Let X be a binomially distributed random variable with parameters $0 < p < 1$ and $n \ge 1$. This means that $Prob(X = k) = {n \choose k} p^k (1-p)^{n-k}$ for $k = 0, 1, \ldots, n$. Prove that

- (1) $E(X) = np$,
- (2) $Var(X) = np(1-p)$,
- (3) Let Y_1, \ldots, Y_n be independent random variables distributed Bernoulli with parameter p, i.e., $Prob(Y_k = 1) = p$, and $Prob(Y_k = 0) = 1 - p$ for $k =$ $1, \ldots, n$. Show that the random variable $Z = Y_1 + \ldots + Y_n$ is binomially distributed with parameters p and n .
- (4) Let Y_1, \ldots be an infinite sequence of independent random variables distributed Bernoulli with parameter p, i.e., $Prob(Y_k = 1) = p$, and $Prob(Y_k = 1)$ 0) = 1 – p for $k \ge 1$. Let

$$
T = \min\left\{n \ge 1; Y_n = 1\right\}
$$

if such an *n* exists and we put $T = \infty$ otherwise. Show that

$$
Prob(T = \infty) = 0.
$$

Question 1. By definition $\lim_{x\to x_0} f(x)$ exists if there exists a such that for every sequence (x_n) , $x_n \to x_0$, we have

$$
\lim_{x_n \to x_0} f(x_n) = a.
$$

Therefore, to show that the limit does not exist, it is enough to find two sequences (x_n) and (y_n) , such that $x_n \to x_0$, $y_n \to x_0$, the limits $\lim_{n\to\infty} f(x_n)$ and $\lim_{n\to\infty} f(y_n)$ exist and

$$
\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(x_n) .
$$

To this end define

$$
x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}
$$
, $y_n = \frac{1}{\frac{3\pi}{2} + 2n\pi}$.

Then $x_n \to 0$, $y_n \to 0$ and for every $n \ge 1$

$$
-1 = \sin \frac{1}{y_n} \neq \sin \frac{1}{x_n} = 1.
$$

Since both sequences are constant we obtain

$$
-1 = \lim_{n \to \infty} \sin \frac{1}{y_n} \neq \lim_{n \to \infty} \sin \frac{1}{x_n} = 1.
$$

Question 2.

(1) Assume first, that $E_1 \cap E_2 = \emptyset$. Then, the formula holds: $|E_1 \cup E_2|$ $|E_1| + |E_2|$ and a similar formula obviously holds for three disjoint sets:

$$
f_{\rm{max}}
$$

(1) $|E_1 \cup E_2 \cup E_3| = |E_1| + |E_2| + |E_3|$.

Since we have disjoint union

$$
E_1 \cup E_2 = [(E_1 \setminus (E_1 \cap E_2))] \cup [(E_2 \setminus (E_1 \cap E_2))] \cup (E_1 \cap E_2),
$$

formula [\(1\)](#page-1-0) gives

$$
|E_1 \cup E_2| = |E_1| + |E_2| + |E_1 \cap E_2|.
$$

Moreover,

$$
E_1 = (E_1 \setminus (E_1 \cap E_2)) \cup (E_1 \cap E_2),
$$

and

$$
E_2 = (E_2 \setminus (E_1 \cap E_2)) \cup (E_1 \cap E_2,
$$

hence for $k = 1, 2$

$$
|E_k| = |E_k \setminus (E_1 \cap E_2)| + |E_1 \cap E_2|,
$$

and the claim follows immediately.Of course the proof follows easily from the geometric interpretation using Venn diagrams.

(2) Note that

$$
E_1 \cup E_2 \cup E_3 = (E_1 \cup E_2) \cup E_3.
$$

Therefore, using twice part 1 of the Question we obtain

$$
|E_1 \cup E_2 \cup E_3| = |E_1 \cup E_2| + |E_3| - |(E_1 \cup E_2) \cap E_3|
$$

= |E_1| + |E_2| + |E_3| - |E_1 \cap E_2| - |(E_1 \cup E_2) \cap E_3|.

Using the fact that

$$
(E_1 \cup E_2) \cap E_3 = (E_1 \cap E_3) \cup (E_2 \cap E_3)
$$

and

(2)

$$
(E_1 \cap E_3) \cap (E_2 \cap E_3) = E_1 \cap E_2 \cap E_3,
$$

and invoking part 1 of the Question again we find that

$$
|(E_1 \cup E_2) \cap E_3| = |E_1 \cup E_3| + |E_2 \cap E_3| - |E_1 \cap E_2 \cap E_3||
$$

Inserting the last fromula into equation [\(2\)](#page-1-1) we complete the proof. (3) Use the same idea as in the proof of part 2, noting that for $n \geq 2$

$$
E_1 \cup \cdots \cup E_n = (E_1 \cup \cdots E_{n-1}) \cup E_n.
$$

Question 3.

(1) Note first that for $k \geq 1$

(3)
$$
\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}
$$

Therefore

$$
E(X) = \sum_{k=0}^{n} kProb(X = k) = \sum_{k=0}^{n} k {n \choose k} p^{k} (1-p)^{n-k}
$$

=
$$
\sum_{k=1}^{n} k {n \choose k} p^{k} (1-p)^{n-k}
$$

=
$$
np \sum_{k=1}^{n} {n-1 \choose k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}
$$

=
$$
np \sum_{k=0}^{n-1} {n-1 \choose k} p^{k} (1-p)^{(n-1)-k}
$$

=
$$
np.
$$

The last inequality follows since $\binom{n-1}{k} p^k (1-p)^{(n-1)-k}$ are the binomial probabilities for a binomially distributed random variable with parameters p and $(n-1)$, hence

$$
\sum_{k=0}^{n-1} {n-1 \choose k} p^k (1-p)^{(n-1)-k} = 1.
$$

(2) Let us recall first that

$$
Var(X) = E(X^{2}) - [E(X)]^{2},
$$

and since for $n = 1$ we have $X^2 = X$, the formula follows from part 1. We need to consider $n \geq 2$. Next

$$
E(X^{2}) = E[X(X - 1)] + E(X)
$$

so that

(4)
$$
Var(X) = E[X(X-1)] - [E(X)]^2 + E(X)
$$

. It remains to compute $E[X(X-1)]$. We will show that

(5)
$$
E[X(X-1)] = n(n-1)p^2.
$$

Using twice equation [\(3\)](#page-2-0) we obtain for $n \geq k \geq 2$

$$
\binom{n}{k} = \frac{n(n-1)}{k(k-1)} \binom{n-2}{k-2},
$$

hence

$$
E[X(X-1)] = \sum_{k=2}^{n} k(k-1)P(X=k)
$$

=
$$
\sum_{k=2}^{n} k(k-1) {n \choose k} p^{k} (1-p)^{n-k}
$$

=
$$
n(n-1)p^{2} \sum_{k=2}^{n} {n-2 \choose k-2} p^{k-2} (1-p)^{(n-2)-(k-2)}
$$

=
$$
n(n-1)p^{2} \sum_{k=0}^{n-2} {n-2 \choose k} p^{k} (1-p)^{(n-2)-k}
$$

=
$$
n(n-1)p^{2}.
$$

Combining (4) , part 1 and (5) we obtain

$$
Var(X) = n(n - 1)p^{2} - n^{2}p^{2} + np = np(1 - p)
$$

as desired.

(3) Fix integers $1 \leq i_1 < \cdots < i_k \leq n$ and let $1 \leq j_1 < \cdots < j_n - k \leq n$ denote the remaing integers in the set $\{1, \ldots, n\}$. If $k = 0$ or $k = n$ then one of these sets is empty. By independence

$$
P(Y_{i_1} = \cdots = Y_{i_k} = 1, Y_{j_1} = \cdots = Y_{j_{n-k}} = 0) = p^k (1-p)^{n-k}.
$$

Then number of choices of k indices i_1, \ldots, i_k is equal to $\binom{n}{k}$ Then we have

$$
P(Z = k) = \sum_{\text{all choices of }i_1,\dots,i_k} P(Y_{i_1} = \dots = Y_{i_k} = 1, Y_{j_1} \dots = Y_{j_{n-k}} = 0)
$$

$$
= \sum_{\text{all choices of }i_1,\dots,i_k} p^k (1-p)^{n-k}
$$

$$
= {n \choose k} p^k (1-p)^{n-k}
$$

occurs if and only if k out of n random variables take value 1 and the remaining $(n - k)$ random variables take value 0. Eac

(4) It is enough to show that

$$
P(T < \infty) = 1.
$$

We have

$$
P(T < \infty) = \sum_{k=1}^{\infty} P(T = k).
$$

Clearly, $P(T = 1) = P(Y_1 = 1) = p$ and for $k \ge 2$ using independence we find that

$$
P(T = k) = P(Y_1 = \dots = Y_{k-1} = 0, Y_k = 1) = (1 - p)^{k-1}p.
$$

Therefore,

$$
P(T < \infty) = \sum_{k=1}^{\infty} (1 - p)^{k-1} p = 1.
$$

4