THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

STAT4528 PROBABILITY AND MARTINGALE THEORY SEMESTER 1 2022

LECTURERS: SASHA FISH AND BEN GOLDYS

DIAGNOSTIC QUIZ

Questions 1. Prove that the limit

$$\lim_{x\to 0} \sin\frac{1}{x}$$

does not exist.

Question 2. Let E_1, \ldots, E_n be finite subsets of the set Ω . We denote by |E| the number of elements in a finite set E. Prove the following

- (1) $|E_1 \cup E_2| = |E_1| + |E_2| |E_1 \cap E_2|$
- (2) $|E_1 \cup E_2 \cup E_3| = |E_1| + |E_2| + |E_3| |E_1 \cap E_2| |E_1 \cap E_3| |E_2 \cap E_3| + |E_1 \cap E_2 \cap E_3|$.
- (3) Using mathematical induction prove that the following holds true:

$$|E_1 \cup E_2 \cup \ldots \cup E_n| = \sum_{k=1}^n |E_k| - \sum_{i,j \in \{1,\ldots,n\}} |E_i \cap E_j| + \ldots + (-1)^{n+1} |E_1 \cap E_2 \cap \ldots \cap E_n|.$$

Question 3. Let X be a binomially distributed random variable with parameters $0 and <math>n \ge 1$. This means that $Prob(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ for $k = 0, 1, \ldots, n$. Prove that

- (1) E(X) = np,
- (2) Var(X) = np(1-p),
- (3) Let Y_1, \ldots, Y_n be independent random variables distributed Bernoulli with parameter p, i.e., $Prob(Y_k = 1) = p$, and $Prob(Y_k = 0) = 1 p$ for $k = 1, \ldots, n$. Show that the random variable $Z = Y_1 + \ldots + Y_n$ is binomially distributed with parameters p and n.
- (4) Let $Y_1,...$ be an infinite sequence of independent random variables distributed Bernoulli with parameter p, i.e., $Prob(Y_k = 1) = p$, and $Prob(Y_k = 0) = 1 p$ for $k \ge 1$. Let

$$T = \min\{n \ge 1; Y_n = 1\}$$

if such an n exists and we put $T=\infty$ otherwise. Show that

$$Prob(T=\infty)=0$$
.

ANSWERS

Question 1. By definition $\lim_{x\to x_0} f(x)$ exists if there exists a such that for every sequence (x_n) , $x_n\to x_0$, we have

$$\lim_{x_n \to x_0} f(x_n) = a.$$

Therefore, to show that the limit does not exist, it is enough to find two sequences (x_n) and (y_n) , such that $x_n \to x_0$, $y_n \to x_0$, the limits $\lim_{n\to\infty} f(x_n)$ and $\lim_{n\to\infty} f(y_n)$ exist and

$$\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(x_n) .$$

To this end define

$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}, \quad y_n = \frac{1}{\frac{3\pi}{2} + 2n\pi}.$$

Then $x_n \to 0$, $y_n \to 0$ and for every $n \ge 1$

$$-1=\sin\,\frac{1}{y_n}\neq\sin\frac{1}{x_n}=1\,.$$

Since both sequences are constant we obtain

$$-1 = \lim_{n \to \infty} \sin \frac{1}{y_n} \neq \lim_{n \to \infty} \sin \frac{1}{x_n} = 1.$$

Question 2.

(1) Assume first, that $E_1 \cap E_2 = \emptyset$. Then, the formula holds: $|E_1 \cup E_2| = |E_1| + |E_2|$ and a similar formula obviously holds for three disjoint sets:

(1)
$$|E_1 \cup E_2 \cup E_3| = |E_1| + |E_2| + |E_3|.$$

Since we have disjoint union

$$E_1 \cup E_2 = [(E_1 \setminus (E_1 \cap E_2))] \cup [(E_2 \setminus (E_1 \cap E_2))] \cup (E_1 \cap E_2),$$

formula (1) gives

$$|E_1 \cup E_2| = |E_1| + |E_2| + |E_1 \cap E_2|$$
.

Moreover,

$$E_1 = (E_1 \setminus (E_1 \cap E_2)) \cup (E_1 \cap E_2)$$
,

and

$$E_2 = (E_2 \setminus (E_1 \cap E_2)) \cup (E_1 \cap E_2,$$

hence for k = 1, 2

$$|E_k| = |E_k \setminus (E_1 \cap E_2)| + |E_1 \cap E_2|,$$

and the claim follows immediately. Of course the proof follows easily from the geometric interpretation using Venn diagrams.

(2) Note that

$$E_1 \cup E_2 \cup E_3 = (E_1 \cup E_2) \cup E_3$$
.

Therefore, using twice part 1 of the Question we obtain

(2)
$$|E_1 \cup E_2 \cup E_3| = |E_1 \cup E_2| + |E_3| - |(E_1 \cup E_2) \cap E_3| = |E_1| + |E_2| + |E_3| - |E_1 \cap E_2| - |(E_1 \cup E_2) \cap E_3|.$$

Using the fact that

$$(E_1 \cup E_2) \cap E_3 = (E_1 \cap E_3) \cup (E_2 \cap E_3)$$

and

$$(E_1 \cap E_3) \cap (E_2 \cap E_3) = E_1 \cap E_2 \cap E_3$$

and invoking part 1 of the Question again we find that

$$|(E_1 \cup E_2) \cap E_3| = |E_1 \cup E_3| + |E_2 \cap E_3| - |E_1 \cap E_2 \cap E_3||$$

Inserting the last fromula into equation (2) we complete the proof.

(3) Use the same idea as in the proof of part 2, noting that for $n \geq 2$

$$E_1 \cup \cdots \cup E_n = (E_1 \cup \cdots \cup E_{n-1}) \cup E_n$$
.

Question 3.

(1) Note first that for $k \geq 1$

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$

Therefore

$$\begin{split} E(X) &= \sum_{k=0}^n k Prob(X=k) = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \\ &= \sum_{k=1}^n k \binom{n}{k} p^k (1-p)^{n-k} \\ &= np \sum_{k=1}^n \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)} \\ &= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} \\ &= np. \end{split}$$

The last inequality follows since $\binom{n-1}{k}p^k(1-p)^{(n-1)-k}$ are the binomial probabilities for a binomially distributed random variable with parameters p and (n-1), hence

$$\sum_{k=0}^{n-1} {n-1 \choose k} p^k (1-p)^{(n-1)-k} = 1.$$

(2) Let us recall first that

$$Var(X) = E(X^2) - [E(X)]^2$$
,

and since for n=1 we have $X^2=X$, the formula follows from part 1. We need to consider $n\geq 2$. Next

$$E(X^2) = E[X(X-1)] + E(X)$$

so that

(4)
$$Var(X) = E[X(X-1)] - [E(X)]^2 + E(X)$$

. It remains to compute E[X(X-1)]. We will show that

(5)
$$E[X(X-1)] = n(n-1)p^{2}.$$

Using twice equation (3) we obtain for $n \ge k \ge 2$

$$\binom{n}{k} = \frac{n(n-1)}{k(k-1)} \binom{n-2}{k-2},$$

hence

$$E[X(X-1)] = \sum_{k=2}^{n} k(k-1)P(X=k)$$

$$= \sum_{k=2}^{n} k(k-1) \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= n(n-1)p^{2} \sum_{k=2}^{n} \binom{n-2}{k-2} p^{k-2} (1-p)^{(n-2)-(k-2)}$$

$$= n(n-1)p^{2} \sum_{k=0}^{n-2} \binom{n-2}{k} p^{k} (1-p)^{(n-2)-k}$$

$$= n(n-1)p^{2}.$$

Combining (4), part 1 and (5) we obtain

$$Var(X) = n(n-1)p^{2} - n^{2}p^{2} + np = np(1-p)$$

as desired.

(3) Fix integers $1 \le i_1 < \dots < i_k \le n$ and let $1 \le j_1 < \dots < j_n - k \le n$ denote the remaing integers in the set $\{1, \dots, n\}$. If k = 0 or k = n then one of these sets is empty. By independence

$$P(Y_{i_1} = \dots = Y_{i_k} = 1, Y_{j_1} = \dots = Y_{j_{n-k}} = 0) = p^k (1-p)^{n-k}$$

Then number of choices of k indices i_1, \ldots, i_k is equal to $\binom{n}{k}$. Then we have

$$\begin{split} P(Z=k) &= \sum_{\text{all choices of i}_1,\dots,i_k} P(Y_{i_1}=\dots=Y_{i_k}=1,Y_{j_1}\dots=Y_{j_{n-k}}=0) \\ &= \sum_{\text{all choices of i}_1,\dots,i_k} p^k (1-p)^{n-k} \\ &= \binom{n}{k} p^k (1-p)^{n-k} \end{split}$$

occurs if and only if k out of n random variables take value 1 and the remaining (n-k) random variables take value 0. Eac

(4) It is enough to show that

$$P(T < \infty) = 1$$
.

We have

$$P(T < \infty) = \sum_{k=1}^{\infty} P(T = k).$$

Clearly, $P(T=1)=P(Y_1=1)=p$ and for $k\geq 2$ using independence we find that

$$P(T=k) = P(Y_1 = \dots = Y_{k-1} = 0, Y_k = 1) = (1-p)^{k-1}p.$$

Therefore,

$$P(T < \infty) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = 1.$$