The University of Sydney School of Mathematics and Statistics

Diagnostic Quiz MATH4512 Stochastic Analysis

Semester 2, 2023 Lecturer: Anna Aksamit

- **1.** Let X and Y be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with the same distribution.
 - (a) Is it true that

$$\mathbb{E}\left(\frac{X}{X+Y}\right) = \mathbb{E}\left(\frac{Y}{X+Y}\right)?$$

(b) Suppose additionally that $X \leq Y$. Is that true that X = Y a.s.?

If the answer is "yes" prove the claim, if the answer is "no" provide a counterexample.

- **2.** Let Y, X, X_1, X_2, \dots be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Show that
 - (a) If for $\varepsilon_n \searrow 0$ it holds that $\sum_{n=1}^{\infty} \mathbb{P}(|X_n X| > \varepsilon_n) < \infty$, then $X_n \to X$ a.s.
 - (b) If $X_n \xrightarrow{\mathbb{P}} X$ and $X_n \xrightarrow{\mathbb{P}} Y$, then X = Y a.s.
- **3.** A random variable X has exponential distribution with parameter $\alpha > 0$ if its distribution function is

$$F_X(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- (a) Let X_1 and X_2 be two independent random variables with exponential distribution with parameters $\alpha > 0$ and $\beta > 0$ respectively. Find the distribution function and probability density function of min $\{X_1, X_2\}$. Compute the probability $\mathbb{P}(X_1 < X_2)$.
- (b) Random variables X and Y are independent and have exponential distribution with the same parameter α . Find the distribution of X Y.

4. Show that two random variables X and Y on $(\Omega, \mathcal{F}, \mathbb{P})$ are equal a.s. if and only if

$$\mathbb{E}\Big(h(X)f(Y)\Big) = \mathbb{E}\Big(h(X)f(X)\Big)$$

for any $h, f: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ bounded measurable functions

5. Let $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}([0, 1])$ and \mathbb{P} be Lebesgue measure on (Ω, \mathcal{F}) . Let \mathcal{Y} be a sub σ algebra and X be a random variable given by:

$$\mathcal{Y} = \sigma([0, \frac{1}{4}], [\frac{1}{4}, 1]), \text{ and } X(\omega) = \sqrt{\omega}.$$

Compute the conditional expectation $\mathbb{E}(X|\mathcal{Y})$.

- 6. Let (Ω, \mathcal{F}) be a measurable space and $\mathbb{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ be a filtration on that space. Suppose that τ_1 and τ_2 are two stopping times.
 - (a) Show that $\tau_1 + \tau_2$ is a stopping time.
 - (b) Assume that $\tau_2 \geq \tau_1$. Is it true that $\tau_2 \tau_1$ is a stopping time? Either prove that it is or provide an example showing that it is not.