

ACE Network Subject Information Guide

Time Series

Semester 2, 2024

Administration and contact details

Host department	School of Mathematical and Physical Sciences		
Host institution	Macquarie University		
Name of lecturer	Nan Zou		
Phone number	02 98508926		
Email address	nan.zou@mq.edu.au		
Homepage	https://sites.google.com/site/nzoupersonal/home		
Name of honours coordinator	NA		
Phone number	NA		
Email address	NA		
Name of masters coordinator	Nan Zou		
Phone number	02 98508926		
Email address	nan.zou@mq.edu.au		

Subject details

Handbook entry URL	TBD		
Subject homepage URL	TBD		
Honours student hand-out URL	TBD		
Teaching period (start and end date):	22 July 2024 - 3 Nov 2024		
Exam period (start and end date):	4 Nov 2024 - 22 Nov 2024		
Contact hours per week:	2		
ACE enrolment closure date:	TBD		
Lecture day(s) and time(s):	TBD		
Description of electronic access arrangements	TBD		
for students (for example, LMS)			

Subject content

1. Subject content description

In statisticians' ideal, all random elements are independent and identically distributed. However, in Time Series, the future and the past are usually not independent. To tackle and utilise this dependence, this unit introduces Time Series Analysis with an emphasis on Forecasting. Its first part gives some intuitions about the trend, seasonality and cycles of the time series and then uses these intuitions to forecast. Its second part tries to depict the dependence within time series with stochastic models, e.g., ARIMA and the state-of-the-art Neural Network, and then make forecasts based on these models.

2. Week-by-week topic overview

- 1 Introduction
- 2 Time series graphics
- 3 Time series decomposition
- 4 Time series features
- 5 The forecaster's toolbox
- 6 Time series regression models
- 7 Exponential smoothing
- 8 Exponential smoothing
- 9 ARIMA models
- 10 ARIMA models
- 11 ARIMA models
- 12 Dynamic Regression models
- 13 Neural Network

3. Assumed prerequisite knowledge and capabilities

Knowledge of probability distribution, expectation, conditional expectation, confidence interval, hypothesis testing and perhaps likelihood; familiarity with the R programming language.

4. Learning outcomes and objectives

- a. provide an understanding of common statistical methods used in forecasting
- b. develop computer skills for forecasting time series data
- c. provide insights into the problems of large scale forecasting systems

5. Learning resources

- Rob J Hyndman and George Athanasopoulos (2021) Forecasting: principles and practice, 3rd edition, OTexts: Melbourne, Australia.
- The online version of this book could be found at https://otexts.com/fpp3/

6. Assessment

Exam/assignment/classwork breakdown						
Exam	55%	Assignment	3*15% = 45%	Class work	0 %	
Assignment due dates		Week 4	Week 8	Week 12		
Approxima	Approximate exam date 4 Nov 2024 - 22 Nov 2			- 22 Nov 2024		

Institution honours program details – To Be Determined

Weight of subject in total honours assessment	Click here to enter text.
at host department	
Thesis/subject split at host department	Click here to enter text.
Honours grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
Н3	Enter range %

Institution masters program details – To Be Determined

Weight of subject in total masters assessment at host department	Click here to enter text.
Thesis/subject split at host department	Click here to enter text.
Masters grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
Н3	Enter range %